首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A multisyringe flow injection analysis method for the determination of uranium in water samples was developed. The methodology was based on the complexation reaction of uranium with arsenazo (III) at pH 2.0. Uranium concentrations were spectrophotometrically detected at 649 nm using a light emitting diode. Under the optimized conditions, a linear dynamic range from 0.1 to 4.0 μg mL−1, a 3σ detection limit of 0.04 μg mL−1, and a 10σ quantification limit of 0.10 μg mL−1 were obtained. The reproducibility (%) at 0.5, 2.5, and 4.0 μg mL−1 was 2.5, 0.9, and 0.6%, respectively (n = 10). The interference effect of some ions was tested. The proposed method was successfully applied to the determination of uranium in water samples.  相似文献   

2.
A fast and simple multisyringe flow injection analysis (MSFIA) method for routine determination of thorium in water samples was developed. The methodology was based on the complexation reaction of thorium with arsenazo (III) at pH 2.0. Thorium concentrations were spectrophotometrically detected at 665 nm. Under optimal conditions, Beer’s law was obeyed over the range from 0.2 to 4.5 μg mL−1 thorium, a 3σ detection limit of 0.05 μg mL−1, and a 10σ quantification limit of 0.2 μg mL−1 were obtained. The relative standard deviations (RSD, %) at 0.5, 2.5 and 4.5 μg mL−1 was 2.8, 1.5 and 0.8%, respectively (n = 10). It was found that most of the common metal ions and anions did not interfere with the thorium determination. The proposed method was successfully applied to its analysis in various water samples.  相似文献   

3.
The objective of the current study was to develop and subsequently validate a simple, sensitive and precise reversed-phase LC method for the determination of ciprofloxacin hydrochloride in ophthalmic solution form. The chromatographic separation of ciprofloxacin hydrochloride was achieved on a Symmetry Waters C18 column using UV detection at 275 nm. The optimized mobile phase consisted of 2.5% acetic acid solution: methanol:acetonitrile (70:15:15, v/v/v). The proposed method provided linear responses within the concentration range 1.0–6.0 μg mL−1 for ciprofloxacin hydrochloride. Correlation coefficient (r) for the ciprofloxacin hydrochloride was 0.9994. The precision of the method was demonstrated using intra- and inter-day assay RSD% values which were less than 5% in all instances. No interference from any components of pharmaceutical dosage forms was observed.  相似文献   

4.
Praziquantel (PZQ) is a highly lipophilic drug with low aqueous solubility. Despite this, it is well absorbed from the gastrointestinal tract. In this study, a simple LC method was developed and validated, in order to monitor the concentration of PZQ in TC-199 buffer in vitro, in the rat everted gut sac absorption model. PZQ was analyzed by a reversed-phase LC method with an isocratic mobile phase containing acetonitrile and water in the proportions 45:55. The flow-rate was 1 mL min−1 and PZQ was determined by measuring absorbance at 215 nm, at 25 °C. The method was found to be specific, as none of the components of TC-199 or intestinal sac artefacts interfered with the drug peak. Recovery was within acceptable statistical limits. The limit of detection was 0.54 μg mL−1 and the limit of quantitation was 1.63 μg mL−1. The calibration curve was found to be linear in the concentration range of 10–90 μg mL−1 PZQ. The proposed method was found to be rapid and selective and hence can be applied in the monitoring of the absorption of PZQ in in vitro everted gut sac absorption studies.  相似文献   

5.
A miniaturized dispersive liquid–liquid microextraction (DLLME) procedure coupled to liquid chromatography (LC) with fluorimetric detection was evaluated for the preconcentration and determination of thiamine (vitamin B1). Derivatization was carried out by chemical oxidation of thiamine with 5 × 10−5 M ferricyanide at pH 13 to form fluorescent thiochrome. For DLLME, 0.5 mL of acetonitrile (dispersing solvent) containing 90 μL of tetrachloroethane (extraction solvent) was rapidly injected into 10 mL of sample solution containing the derivatized thiochrome and 24% (w/v) sodium chloride, thereby forming a cloudy solution. Phase separation was carried out by centrifugation, and a volume of 20 μL of the sedimented phase was submitted to LC. The mobile phase was a mixture of a 90% (v/v) 10 mM KH2PO4 (pH 7) solution and 10% (v/v) acetonitrile at 1 mL min−1. An amide-based stationary phase involving a ligand with amide groups and the endcapping of trimethylsilyl was used. Specificity, linearity, precision, recovery, and sensitivity were satisfactory. Calibration graph was carried out by the standard additions method and was linear between 1 and 10 ng mL−1. The detection limit was 0.09 ng mL−1. The selectivity of the method was judged from the absence of interfering peaks at the thiamine elution time for blank chromatograms of unspiked samples. A relative standard deviation of 3.2% was obtained for a standard solution containing thiamine at 5 ng mL−1. The esters thiamine monophosphate and thiamine pyrophosphate can also be determined by submitting the sample to successive acid and enzymatic treatments. The method was applied to the determination of thiamine in different foods such as beer, brewer’s yeast, honey, and baby foods including infant formulas, fermented milk, cereals, and purees. For the analysis of solid samples, a previous extraction step was applied based on an acid hydrolysis with trichloroacetic acid. The reliability of the procedure was checked by analyzing a certified reference material, pig’s liver (CRM 487). The value obtained was 8.76 ± 0.2 μg g−1 thiamine, which is in excellent agreement with the certified value, 8.6 ± 1.1 μg g−1.  相似文献   

6.
A simple, reproducible, and efficient liquid chromatographic method was developed with UV detection. Water (0.05% TFA):acetonitrile (0.05% TFA) was used as the mobile phase in a gradient system for the determination of procyanidin B2 (PB2) and epicatechin (EC) in the bark of Guazuma ulmifolia Lam. The analysis was performed using a Phenomenex Gemini RP C18 column (5 μm) as stationary phase, at 30 °C, with a flow rate of 0.8 mL min−1, at a wavelength of 210 nm for detection and determination. The main validation parameters of the method were also determined. Calibration curves were found to be linear, with ranges of 20.00–150.00 (PB2) and 10.00–110.00 μg mL−1 (EC). The correlation coefficients of linear regression analysis were between 0.9981 and 0.9988, and the detection limits were between 2.89 and 2.54 μg mL−1. The contents of PB2 and EC were successfully determined, with satisfactory reproducibility and recovery. Recoveries of the PB2 and EC were 103.00 and 104.01%, respectively. The method was successfully applied to the determination of procyanidins in the bark of G. ulmifolia.  相似文献   

7.

This paper describes the validation of an isocratic LC method for the assay of linezolid in tablets. Validation parameters such as linearity, precision, accuracy, specificity, limit of detection, limit of quantitation and robustness were determined. LC was carried out by reversed phase technique on an RP-18 column with a mobile phase composed of 1% acetic acid:methanol:acetonitrile (50:25:25, v/v/v). Linezolid and your combination drug product were exposed to acid, base, oxidation, dry heat and photolytic stress conditions. A linear response (r > 0.9999) was observed in the range of 8.0–20.0 μg mL−1. The retention time of linezolid was 4.6 min. The method showed good recoveries and intra- and inter-day relative standard deviations were less than 1.0%. The LOD and LOQ were 0.21 and 0.63 μg mL−1, respectively. The developed LC method for determination of related substances and assay determination of linezolid can be used to evaluate the quality of regular production samples. It can also be used to test the stability samples of linezolid.

  相似文献   

8.
A reversed-phase liquid chromatographic (LC) method was developed for the assay of nitazoxanide (NTZ) in solid dosage formulations. An isocratic LC separation was performed on a Phenomenex Synergi Fusion C18 column (250 mm × 4.6 mm, i.d., 4 μm particle size) using a mobile phase of 0.1% o-phosphoric acid solution, pH 6.0: acetonitrile (45:55, v/v) at a flow rate of 1.0 mL min−1. Detection was achieved with a photodiode array detector at 240 nm. The detector response for NTZ was linear over the concentration range from 2 to 100 μg mL−1 (r = 0.9999). The specificity and stability-indicating capability of the method were proved using stress conditions. The RSD values for intra-day precision were less than 1.0% for tablets and powder for oral suspension. The RSD values for inter-day precision were 0.6 and 0.7% for tablets and powder for oral suspension. The accuracy was 100.4% (RSD = 1.8%) for tablets and 100.9% (RSD = 0.3%) for powder for oral suspension. The limits of quantitation and detection were 0.4 and 0.1 μg mL−1. There was no interference of the excipients on the determination of the active pharmaceutical ingredient. The proposed method was precise, accurate, specific, and sensitive. It can be applied to the quantitative determination of drug in tablets and powder for oral suspension.  相似文献   

9.
A simple stability-indicating reversed-phase liquid chromatographic method with diode-array detection was developed and validated for the quantitative determination of ebastine in tablets and syrup. The LC method was carried out on a C18 column with acetonitrile:phosphoric acid 0.1% pH 3.0 (55:45, v/v) as mobile phase, at a flow rate of 1.2 mL min−1. Ultraviolet detection of ebastine was at 254 nm. A linear response (r = 0.9999) was observed in the range of 10–80 μg mL−1. The RSD values for intra- and inter-day precision studies showed good results (RSD < 2%) and accuracy was greater than 98%. Validation parameters such as specificity and robustness were also determined. The method was found to be stability-indicating and can be applied to quantitative determination of ebastine in tablets and syrup.  相似文献   

10.
A novel molecularly imprinted polymer solid-phase extraction (MISPE) with flow-injection chemiluminescence (CL) was developed for the determination of pazufloxacin mesilate (PZFX). The molecularly imprinted polymer (MIP) was synthesized by using PZFX as the imprinting molecule. A glass tube packed the particles of the MIP was employed as MISPE micro-column, which was connected into the sampling loop of the eight-way injection valve for on-line selective preconcentration and extraction of PZFX. The eluent of acetonitrile:acetic acid (9:1, v:v) was used as carrier for eluting the adsorbed PZFX to react with the mixture of cerium(IV) and sodium sulfite in the flow cell to produce strong CL. The relative intensity of CL was linear to PZFX concentration in the range from 2.5 × 10−9 to 2.5 × 10−7 g mL−1. The limit of detection was 7 × 10−10 g mL−1 (3 σ) and the relative standard deviation for 5 × 10−8 g mL−1of PZFX solution was 3.7% (n = 7). This method has been applied to the determination of PZFX in human urine.  相似文献   

11.
A fast and sensitive liquid chromatography–mass spectrometry method was developed for the determination of ursolic acid (UA) in rat plasma and tissues. Glycyrrhetinic acid was used as the internal standard (IS). Chromatographic separation was performed on a 3.5 μm Zorbax SB-C18 column (30 mm × 2.1 mm) with a mobile phase consisting of methanol and aqueous 10 mM ammonium acetate using gradient elution. Quantification was performed by selected ion monitoring with (m/z) 455 for UA and (m/z) 469 for the IS. The method was validated in the concentration range of 2.5 − 1470 ng mL−1 for plasma samples and 20 − 11760 ng g−1 for tissue homogenates. The intra- and inter-day assay of precision in plasma and tissues ranged from 1.6% to 7.1% and 3.7% to 9.0%, respectively, and the intra- and inter-day assay accuracy was 84.2 − 106.9% and 82.1 − 108.1%, respectively. Recoveries in plasma and tissues ranged from 83.2% to 106.2%. The limits of detections were 0.5 ng mL−1 or 4.0 ng g−1. The recoveries for all samples were >90%, except for liver, which indicated that ursolic acid may metabolize in liver. The main pharmacokinetic parameters obtained were T max = 0.42 ± 0.11 h, C max = 1.10 ± 0.31 μg mL−1, AUC = 1.45 ± 0.21 μg h mL−1 and K a = 5.64 ± 1.89 h−1. The concentrations of UA in rat lung, spleen, liver, heart, and cerebellum were studied for the first time. This method is validated and could be applicable to the investigation of the pharmacokinetics and tissue distribution of UA in rats.  相似文献   

12.
Using a LKB-2277 bioactivity monitor, stop-flow mode, the power–time curves of Candida albicans growth at 37 °C affected by berberine were measured. The check experiments were studied based on agar cup method to observe the inhibitory diameter and serial dilution method to determine the minimal inhibitory concentration (MIC) of berberine on C. albicans growth. By analyzing the quantitative thermogenic parameters taken from the power–time curves using correspondence analysis (CA), we could find that berberine at a low concentration (5.0 μg mL−1) began to inhibit the growth of C. albicans and at a high concentration (75.0 μg mL−1) completely inhibited C. albicans growth. The anti-fungal activity of berberine could also be expressed as half-inhibitory concentration IC50, i.e., 50% effective in this inhibition. The value of IC50 of berberine on C. albicans was 34.52 μg mL−1. The inhibitory diameters all exceeded 10 mm in test range and the MIC was 500 μg mL−1. Berberine had strong anti-fungal effect on C. albicans growth. This work provided an important idea of the combination of microcalorimetry and CA for the study on anti-fungal effect of berberine and other compounds. Compared with the agar cup method and serial dilution method, microcalorimetry not only offered a useful way for evaluating the bioactivity of drugs, but also provides more information about the microbial growth and all this information was significant for the synthesis and searching of antibiotics.  相似文献   

13.
A 13-min LC–MS method was developed for the determination of daptomycin, a new potent antibiotic, in peritoneal fluid, blood plasma, and urine of patients receiving renal replacement therapy. Chromatography was performed on a C18 column and detection was performed by a single-quadrupole mass spectrometer coupled to LC via an electrospray interface (ESI). The column effluent was also monitored at 370 nm using a photodiode-array detector. The developed method provided a linear dynamic range for concentrations from 0.5 μg mL−1 to 100 μg mL−1. Method precision and accuracy were found to be satisfactory for clinical application, thus the method was successfully used for the analysis of daptomycin in pharmacokinetic studies. The drug was preventively administered against Gram-positive infections to 19 clinical patients undergoing peritoneal dialysis. Peritoneal fluid, blood plasma, and urine samples were collected at 13 time points over a period of 48 h. Clinical samples were analysed following simple sample-preparation procedures and daptomycin was unambiguously detected and quantified.  相似文献   

14.
A reversed-phase ion-pairing liquid chromatographic method was developed and validated for the assay of Fe(II) in ferrous bisglycinate (Fe-bis-gly) capsules using 4-(2-pyridylazo) resorcinol reagent. The analysis was carried out using a Gemini RP-18 (150 mm × 4.6 mm I.D., particle size 5 μm) analytical column; the mobile phase consisted of a mixture of acetonitrile–water (28:72 v/v) containing 1 mM tetrabutylammonium hydrogensulfate and 1% phosphate buffer (pH 8.0). The flow rate was 1.0 mL min−1 and the detection was achieved with a photodiode array (PDA) detector at 706 nm. The specificity of the method was proved using stress conditions and evaluated using a PDA detector. The data validation showed that the method is specific, fast, accurate, and reproducible for the determination of Fe-bis-gly in dosage form. The response was linear over a range of 1.0–2.6 μg mL−1 (r = 0.9999). The accuracy of the method ranged from 98.02 to 102.75%. The RSD values for intra- and inter-day precision studies were below 1.3 and 1.1%, respectively. There was no interference of the excipients on the determination of the active pharmaceutical ingredient.  相似文献   

15.
 A simple, rapid, selective, sensitive and economical method has been developed for the simultaneous determination of trace amounts of palladium and nickel in aqueous methanolic medium using 2-(2-thiazolylazo)-5-dimethylam inobenzoic acid as an analytical reagent by first derivative spectrophotometr y. Palladium is determined by measuring base to peak distance at λ=695.0 nm while nickel is estimated by zero crossing method in the mixture. The linearity is maintained between 0.12–1.75 μg mL−1 for palladium and 0.07–1.60 μg mL−1 for nickel in the pH range 2.8–7.2 and 3.4–8.8 respectively. Seven replicate determinations of 1.0 μ g mL−1 of palladium and 0.8 μg mL−1 of nickel in a mixture give a mean signal height of 0.391 for Pd and 0.541 for Ni with relative standard deviations of 0.9% and 1.2%, respectively. The sensitivity of the proposed method is 0.391 (dA/dλ)/(μg mL−1) for palladium and 0.685 (dA/dλ)/(μg mL−1) for nickel. Various parameters have been optimised for the simultaneous determination of palladium and nickel in various complex samples. Received March 30, 1999. Revision November 25, 1999.  相似文献   

16.
A practical and reliable HPLC method was used for the determination of 2-[4-N-(2-hydroxyethyl)-1-piperazinyl]-N′-ethanesulfonic acid (HEPES) content in the 68Ga-labeled [1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid]-1-Nal3-octreotide (DOTANOC). Linearity of this method was observed in a concentration range of 0.01–10 mg mL−1 and the quantitative limit (signal to noise = 11) was determined as 10 μg mL−1. The HEPES concentration in the final products of 68Ga-DOTANOC was typically lower than the detection limit. Pure water and HEPES buffer as reaction medium were investigated using various activities of gallium-68. It was demonstrated that the presence of HEPES buffer consistently furnished very high radiochemical purity of 68Ga-DOTANOC, which remained stable for several hours post-labeling. Evidence is provided that in addition to its role as a buffer, HEPES also functions as a radioprotectant agent.  相似文献   

17.
A simple and efficient method, based on ultrasound-enhanced surfactant-assisted dispersive liquid–liquid microextraction (UESA-DLLME) followed by high-performance liquid chromatography (HPLC) has been developed for extraction and determination of ketoconazole and econazole nitrate in human blood samples. In this method, a common cationic surfactant, cetyltrimethylammonium bromide (CTAB), was used as dispersant. Chloroform (40 μL) as extraction solvent was added rapidly to 5 mL blood containing 0.068 mg mL−1 CTAB. The mixture was then sonicated for 2 min to disperse the organic chloroform phase. After the extraction procedure, the mixture was centrifuged to sediment the organic chloroform phase, which was collected for HPLC analysis. Several conditions, including type and volume of extraction solvent, type and concentration of the surfactant, ultrasound time, extraction temperature, pH, and ionic strength were studied and optimized. Under the optimum conditions, linear calibration curves were obtained in the ranges 4–5000 μg L−1 for ketoconazole and 8–5000 μg L−1 for econazole nitrate, with linear correlation coefficients for both >0.99. The limits of detection (LODs, S/N = 3) and enrichment factors (EFs) were 1.1 and 2.3 μg L−1, and 129 and 140 for ketoconazole and econazole nitrate, respectively. Reproducibility and recovery were good. The method was successfully applied to the determination of ketoconazole and econazole nitrate in human blood samples.  相似文献   

18.
An analytical procedure involving solid-phase extraction (SPE) and high-performance liquid chromatography-mass spectrometry has been developed for the determination of nine high-intensity sweeteners authorised in the EU; acesulfame-K (ACS-K), aspartame (ASP), alitame (ALI), cyclamate (CYC), dulcin (DUL), neohesperidin dihydrochalcone (NHDC), neotame (NEO), saccharin (SAC) and sucralose (SCL) in a variety of food samples (i.e. beverages, dairy and fish products). After extraction with a buffer composed of formic acid and N,N-diisopropylethylamine at pH 4.5 in ultrasonic bath, extracts were cleaned up using Strata-X 33 μm Polymeric SPE column. The analytes were separated in gradient elution mode on C18 column and detected by mass spectrometer working with an electrospray source in negative ion mode. To confirm that analytical method is suitable for its intended use, several validation parameters, such as linearity, limits of detection and quantification, trueness and repeatibilty were evaluated. Calibration curves were linear within a studied range of concentrations (r 2  ≥ 0.999) for six investigated sweeteners (CYC, ASP, ALI, DUL, NHDC, NEO). Three compounds (ACS-K, SAC, SCL) gave non-linear response in the investigated concentration range. The method detection limits (corresponding to signal-to-noise (S/N) ratio of 3) were below 0.25 μg mL−1 (μg g−1), whereas the method quantitation limits (corresponding to S/N ratio of 10) were below 2.5 μg mL−1 (μg g−1). The recoveries at the tested concentrations (50%, 100% and 125% of maximum usable dose) for all sweeteners were in the range of 84.2 ÷ 106.7%, with relative standard deviations <10% regardless of the type of sample matrix (i.e. beverage, yoghurt, fish product) and the spiking level. The proposed method has been successfully applied to the determination of the nine sweeteners in drinks, yoghurts and fish products. The procedure described here is simple, accurate and precise and is suitable for routine quality control analysis of foodstuffs.  相似文献   

19.
A. Önal 《Chromatographia》2006,64(7-8):459-461
A reversed-phase high-performance liquid chromatographic (HPLC) method with UV detection was developed and validated for the determination of ropinirole (ROP) in tablets. The assay utilized UV detection at 250 nm and a Luna CN column (250 × 4.6 mm I.D, 5 μm). The mobile phases were comprised of acetonitrile: 10 mM nitric acid (pH 3.0) (75:25, v/v). Validation experiments were performed to demonstrate linearity, accuracy, precision, limit of quantitation (LOQ), limit of detection (LOD), and robustness. The method was linear over the concentration range of 0.5–10.0 μg mL−1. The method showed good recoveries (99.75–100.20%) and the relative standard deviations of intra and inter-day assays were 0.38–1.69 and 0.45–1.95%, respectively. The method can be used for quality control assay of ropinirole.  相似文献   

20.
 A sensitive catalytic method is developed for the spectrophotometric determination of oxalic acid. It is based on the catalytic action of oxalic acid on a new indicator reaction – the oxidation of Bromophenol Blue by dichromate in dilute sulfuric acid medium. The reaction rate is monitored spectrophotometrically by measuring the absorbance at 600 nm after quenching the reaction with sodium hydroxide. A calibration graph from 0.1 to 8.0 μg mL−1 of oxalic acid and a detection limit of 0.04 μg mL−1 was obtained. The applicability of this method was demonstrated by the determination of oxalic acid in water extracts from vegetables such as spinach, mushrooms and fresh kidney beans. Received October 18, 1999. Revision June 14, 2000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号