共查询到18条相似文献,搜索用时 265 毫秒
1.
非线性动力方程的增维精细积分法 总被引:30,自引:0,他引:30
对线性定常结构的动力系统提出的精细积分法,能得到在数值上逼近于精确解的结果。但是对于非齐次动力方程却涉及到矩阵求逆的困难,而且通常与时间有关的非齐次项不能进入精细积分的细化过程。采用增维的方法,将非齐次动力方程化为齐次方程,在实施精细积分的过程中不必进行矩阵求逆。这种处理方法对于程序实现和提高数值计算的稳定性十分有利,而且在大型问题中可明显提高计算效率,数值算例显示本文方法是有效的。 相似文献
2.
3.
4.
5.
6.
7.
基于Runge-Kutta法实现对时间步长的自适应选择,研究提高非线性结构动力方程的计算精度。利用Runge-Kutta公式的局部截断误差,得出误差估计值ξn+1,根据ξn+1的大小自适应调节时间步长的大小,为算法提供一个判断语句,其能使算法流程图更加多样性。将该思想应用于经典Runge-Kutta算法和精细Runge-Kutta算法中,得到自适应步长的经典Runge-Kutta算法和精细Runge-Kutta算法,使算法的时间步长依赖于给定的每步误差限值,提高计算精度,数值算例论证了本文方法的有效性。 相似文献
8.
9.
基于精细积分技术的非线性动力学方程的同伦摄动法 总被引:2,自引:0,他引:2
将精细积分技术(PIM)和同伦摄动方法(HPM)相结合,给出了一种求解非线性动力学方程的新的渐近数值方法。采用精细积分法求解非线性问题时,需要将非线性项对时间参数按Taylor级数展开,在展开项少时,计算精度对时间步长敏感;随着展开项的增加,计算格式会变得越来越复杂。采用同伦摄动法,则具有相对筒单的计算格式,但计算精度较差,应用范围也限于低维非线性微分方程。将这两种方法相结合得到的新的渐近数值方法则同时具备了两者的优点,既使同伦摄动方法的应用范围推广到高维非线性动力学方程的求解,又使精细积分方法在求解非线性问题时具有较简单的计算格式。数值算例表明,该方法具有较高的数值精度和计算效率。 相似文献
10.
Burgers方程的小波精细积分算法 总被引:7,自引:3,他引:7
求解偏微分方程的常用方法包括有限差分法、有限元法等。近年来,小波分析在偏微分方程数值求解中的应用已引起很多学者的关注,例如采用Daubechies小波或shannon小波构造的小波配置方法已经取得较好的结果。钟万勰院士提出的偏微分方程的子域精细积分方法是一种半解析方法,方法简单,精度高。将小波方法和精细积分方法相结合应用于偏微分方程的数值求解中将有利于提高算法的精度和稳定性,为此本文以Burgers方程为例,提出了一种求解一维非线性抛物型偏微分方程的小波精积分方法。该方法用拟小波配点法对空间域进行离散,建立起对时间的常微分方程组,然后采用精细时程积分方法对该方程组求解。数值计算结果表明,该方法同其它方法相比,具有计算格式简单,数值稳定性和精度较高的优点。 相似文献
11.
IntroductionTheestablishmentofthetimepreciseintegrationmethodprovidesanewwayforthecomputationofdynamicsystems[1].Theabovemethod ,basedonthesimulationrelationbetweencomputationalstructuralmechanicsandoptimalcontrol,wasdevelopedonthebasisofthesubstructura… 相似文献
12.
In the present paper, based on the precise integration method established in linear dynamic system, an improved precise integration method is presented for nonlinear dynamic system. Firstly, the nonlinear dynamic system is converted into an augmented Lie type dynamic system. Then the precise integration method is improved for solving the above augmented equation and preserving its group structure in the meantime. Finally, two numerical examples are presented to demonstrate the validity and effectiveness of the proposed method. 相似文献
13.
An improved precise integration method(IPIM) for solving the differential Riccati equation(DRE) is presented.The solution to the DRE is connected with the exponential of a Hamiltonian matrix,and the precise integration method(PIM) for solving the DRE is connected with the scaling and squaring method for computing the exponential of a matrix.The error analysis of the scaling and squaring method for the exponential of a matrix is applied to the PIM of the DRE.Based on the error analysis,the criterion for choosing two parameters of the PIM is given.Three kinds of IPIMs for solving the DRE are proposed.The numerical examples show that the IPIM is stable and gives the machine accuracy solutions. 相似文献
14.
In the framework of the specified‐time‐interval scheme, the accuracy of the characteristic method is greatly related to the form of the interpolation. The linear interpolation was commonly used to couple the characteristics method (LI method) in open channel flow computation. The LI method is easy to implement, but it leads to an inevitable smoothing of the solution. The characteristics method with the Hermite cubic interpolation (HP method, originally developed by Holly and Preissmann, 1977) was then proposed to largely reduce the error induced by the LI method. In this paper, the cubic‐spline interpolation on the space line or on the time line is employed to integrate with characteristics method (CS method) for unsteady flow computation in open channel. Two hypothetical examples, including gradually and rapidly varied flows, are used to examine the applicability of the CS method as compared with the LI method, the HP method, and the analytical solutions. The simulated results show that the CS method is comparable to the HP method and more accurate than the LI method. Without tackling the additional equations for spatial or temporal derivatives, the CS method is easier to implement and more efficient than the HP method. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
15.
16.
Duhamel项的精细积分方法在非线性微分方程数值求解中的应用 总被引:2,自引:0,他引:2
基于Duhamel项的精细积分方法,构造了几种求解非线性微分方程的数值算法。首先将非线性微分方程在形式上划分为线性部分和非线性部分,对非线性部分进行多项式近似,利用Duhamel积分矩阵,导出了非线性方程求解的一般格式。然后结合传统的数值积分技术,例如Adams线性多步法等,构造了基于精细积分方法的相应算法。本文算法利用了精细积分方法对线性部分求解高度精确的优点,大大提高了传统算法的数值精度和稳定性,尤其是对于刚性问题。本文构造的算法不需要对线性系统矩阵求逆,可以方便的考察不同的线性系统矩阵对算法性能的影响。数值算例验证了本文算法的有效性,并表明非线性系统的线性化矩阵作为线性部分是比较合理的选择。 相似文献
17.
对一类时滞抛物型方程初边值问题,提出了关于空间步长是四阶精度的高精度无条件稳定的精细积分法.数值算例表明,本文提出的精细积分法具有很高的精度,因而是一种有效的数值方法. 相似文献