首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A movable lug wheel using a rollers-sliding groove mechanism was designed, constructed and tested. Two types of lug moving patterns of the movable lug wheel were proposed and evaluated. Tests were conducted in a soil bin test apparatus to determine the traction performance of the wheel as affected by lug moving pattern, lug spacing, horizontal load and vertical load. Similar tests were also conducted using a fixed lug wheel. Generally, under the same level of vertical load, the fixed lug wheel sank more than the movable lug wheels did. However in general, under various horizontal loads, there was no significant difference of slip between the movable lug wheel and the fixed lug wheel. Among the test lug wheels, the movable lug wheel with lug moving pattern-2 required the smallest driving torque and developed the highest traction efficiency.  相似文献   

2.
A study was conducted to determine the accuracy of Wismer-Luth and Brixius equations in predicting net traction ratio of a high-lug agricultural tyre. The tyre was tested on a sandy clay loam soil in an indoor University Putra Malaysia (UPM) tyre traction testing facility. The experiment was conducted by running the tyre in driving mode. A total of 126 test runs were conducted in a combination consisting of three selected inflation pressures (i.e., 166, 193 and 221 kPa) and two wheel numerics (i.e., 19 and 29) representing two extreme types of soil strength under different levels of travel reduction ranging between 0% and 40%. Regression analysis was conducted to determine the prediction equation describing the tyre torque ratio. Marqurdt’s method used by Wismer-Luth for predicting non-linear equation was not found suitable in predicting the torque ratio of the test tyre awing its low coefficient of determination and inadequacy. The logarithmic model was found suitable in torque ration prediction. From analysis of covariance (ANCOVA) the mean effect of travel speed, tyre inflation pressure and wheel numeric on tyre net traction ratio were found to be highly significant, while the interaction of inflation pressure and wheel numeric was not significant. The 193 kPa inflation pressure was found the best, among the three inflation pressures used, in getting higher net traction ratio and higher maximum efficiency. Finally, two models were formulated for tyre net traction ratio; one in terms of wheel numeric and travel speed reduction and the other in terms of mobility number and travel reduction, to describe the tested tyre performance at different soil strengths.  相似文献   

3.
An in-situ tire test rig was developed for field research on tire tractive and maneuverability performances. The Single Wheel Tester (SWT) was mounted on a tractor and a tested wheel was driven by a hydromotor, along a frame of 3 m length. In the SWT, four load cells were utilized to measure longitudinal and lateral forces, input and self-aligning torques, and two optical counters were applied to calculate forward and angular velocities. Response Surface Methodology was used to execute experimental design and to analyze the collected data. Afterwards, reduced form of a 2 Factor Interaction model was extracted to predict rolling resistance using seven factors. The test results show that increasing the normal load and side slip angle will cause an increment of rolling resistance. The incremental growth rate of the rolling resistance due to the normal load increment was observed. At higher cone index values, increasing the angular velocity reduces the rolling resistance, although at lower cone index values, the effect of angular velocity on rolling resistance is in reverse order. In addition, the increasing moisture content effect on rolling resistance at lower side slip angle values was observed.  相似文献   

4.
Suitability of using rubber tracks as traction device in power tillers replacing pneumatic tires was studied using an experimental setup consisting of a track test rig for mounting a 0.80 m × 0.1 m rubber track and a loading device for applying different drawbar pulls. Tests were conducted in the soil bin filled with lateritic sandy clay loam soil at an average soil water content of 9% dry basis by varying the cone index from 300 to 1000 kPa. Data on torque, pull and Travel Reduction Ratio (TRR) were acquired using sensors and data acquisition system for evaluating its performance. Maximum tractive efficiency of the track was found to be in the range of 77–83% corresponding to a TRR of 0.12–0.045. The Net Traction Ratio (NTR) at maximum tractive efficiency was found to be between 0.49 and 0.36.Using non-linear regression technique, a model for Gross Traction Ratio (GTR) was developed and it could predict the actual values with a maximum variation of 6% as compared to an average variation of 50% with Grisso’s model. Based on this model, tractive efficiency design curves were plotted to achieve optimum tractive performance of track for any given soil condition.  相似文献   

5.
Planetary rovers need high mobility on a rough terrain such as sandy soil, because such a terrain often impedes the rover mobility and causes significant wheel slip. Therefore, the accurate estimation of wheel soil interaction characteristics is an important issue. Recent studies related to wheel soil interaction mechanics have revealed that the classical wheel model has not adequately addressed the actual interaction characteristics observed through experiments. This article proposes an in-wheel sensor system equipped with two sensory devices on the wheel surface: force sensors that directly measure the force distribution between the wheel and soil and light sensors that accurately detect the wheel soil surface boundary line. This sensor design enables the accurate measurement of wheel terrain interaction characteristics such as wheel force distribution, wheel–soil contact angles, and wheel sinkage when the powered wheel runs on loose sand. In this article, the development of the in-wheel sensor system is introduced along with its system diagram and sensor modules. The usefulness of the in-wheel sensor system is then experimentally evaluated via a single wheel test bench. The experimental results confirm that explicit differences can be observed between the classical wheel model and practical data measured by the in-wheel sensor system.  相似文献   

6.
7.
Nowadays, the existing walking wheels still have problems with the wheel-legs structure and the traction trafficability on the loose sand. It is commonly believed that African ostrich (Struthio camelus) is a kind of bipedal species with superior running performance on the sandy environment. Being enlightened by this, four bionic walking wheels (herringbone wheel, in-line wheel, V-shaped wheel and combination wheel) were designed and tested by imitating the structure and posture of ostrich’s feet travelling on sand. The results showed that when the wheel load was 20, 30 and 50N respectively and the slip ratio was less than 35%, the herringbone wheel had better traction trafficability than that of other wheels. When the wheel load was 30, 50 and 70N and the slip ratio was more than 35%, the in-line wheel had better performance than that of other wheels. It was shown in this thesis that the bionic walking wheels designed with the multi-posture wheel-legs and the simple structure could reduce the soil resistance and the disturbance to sand, thereby achieving a superior performance of traveling on sand. In addition, a new idea and research method for designing of walking mechanism on soft terrain has been provided in this thesis.  相似文献   

8.
The working performance of agricultural machinery is largely determined by the walking performance of the wheel when driving in complex unstructured soil. However, the driving performance of existing wheels is not satisfactory for paddy field with muddy soil. The purpose of the current study is therefore to propose a novel rigid wheel for agricultural machinery which is applicable to paddy field with muddy soil. Firstly, a novel arc edge shaped wheel was designed based on the principles of mechanics on the ground. Then the driving performance of this arc edge shaped wheel was evaluated using FE modeling of interaction between rigid wheel and soil. Finally, the structure originally designed arc edge shaped wheel was improved according to FE modeling results, and this improved design was further evaluated by both FE simulation and prototype experiments. Both FE modeling and experimental results indicate that the improved arc edge shaped wheel proposed in this study has a good driving performance with regarding to wheel sinkage and soil reaction force. The proposed arc edge shaped wheel could be used as an effective component of rice harvester for paddy field with muddy soil.  相似文献   

9.
Grouser wheels have been used in planetary rovers to improve mobility performance on sandy terrains. The biggest difference between a wheel with and without grousers is the soil behavior beneath the wheel as the grousers shovel the soil. By analyzing the soil flow, we gain insight into the mechanics dominating the interaction between the wheel and the soil, directly impacting performance. As the soil flow varies depending on the soil properties, the effects of soil type on soil behavior and wheel-traveling performance should be studied. This paper reveals the difference in soil flow and wheel performance on cohesive and non-cohesive soils. We conducted a series of single wheel tests over different types of soils under several wheel-traveling conditions. Soil flow was visualized by using particle image velocimetry (PIV). The experimental results indicate that soil flow characteristics highly depend on the shear strength of the soil. The cohesive soil exhibited lower fluidity due to its higher shear strength. At the same time, the wheel displayed a higher traveling performance over the cohesive soil, that is, a lower slip ratio.  相似文献   

10.
A realistic prediction of the traction capacity of vehicles operating in off-road conditions must account for stochastic variations in the system itself, as well as in the operational environment. Moreover, for mobility studies of wheeled vehicles on deformable soil, the selection of the tire model used in the simulation influences the degree of confidence in the output. Since the same vehicle may carry various loads at different times, it is also of interest to analyze the impact of cargo weight on the vehicle’s traction.This study focuses on the development of an algorithm to calculate the tractive capacity of an off-road vehicle with stochastic vehicle parameters (such as suspension stiffness, suspension damping coefficient, tire stiffness, and tire inflation pressure), operating on soft soil with an uncertain level of moisture, and on a terrain topology that induces rapidly changing external excitations on the vehicle. The analysis of the vehicle–soil dynamics is performed for light cargo and heavy cargo scenarios. The algorithm relies on the comparison of the ground pressure and the calculated critical pressure to decide if the tire can be approximated as a rigid wheel or if it should be modeled as a flexible wheel. It also involves using previously-developed vehicle and stochastic terrain models, and computing the vehicle sinkage, resistance force, tractive force, drawbar pull, and tractive torque.The vehicle model used as a case study has seven degrees of freedom. Each of the four suspension systems is comprised of a nonlinear spring and a viscous (linear or magneto-rheological) damper. An off-road terrain profile is simulated as a 2-D random process using a polynomial chaos approach [Sandu C, Sandu A, Li L. Stochastic modeling of terrain profiles and soil parameters. SAE 2005 transactions. J Commer Vehicles 2005-01-3559]. The soil modeling is concerned with the efficient treatment of the impact of the moisture content on relationships critical in defining the mobility of an off-road vehicle (such as the pressure–sinkage [Sandu C et al., 2005-01-3559] and the shear stress–shear displacement relations). The uncertainties in vehicle parameters and in the terrain profile are propagated through the vehicle model, and the uncertainty in the output of the vehicle model is analyzed [Sandu A, Sandu C, Ahmadian M. Modeling multibody dynamic systems with uncertainties. Part I: theoretical and computational aspects, Multibody system dynamics. Publisher: Springer Netherlands; June 29, 2006. p. 1–23 (23), ISSN: 1384-5640 (Paper) 1573-272X (Online). doi:10.1007/s11044-006-9007-5; Sandu C, Sandu A, Ahmadian M. Modeling multibody dynamic systems with uncertainties. Part II: numerical applications. Multibody system dynamics, vol. 15, No. 3. Publisher: Springer Netherlands; 2006. p. 241–62 (22). ISSN: 1384-5640 (Paper) 1573-272X (Online). doi:10.1007/s11044-006-9008-4]. Such simulations can provide the basis for the study of ride performance, handling, and mobility of the vehicle in rough off-road conditions.  相似文献   

11.
The travelling performance of rigid wheels on sand stratum is measured using two kinds of surface material, i.e. steel and steel coated with rubber. A new method for measuring the displacement of soil beneath the wheel has been developed using small polyester film markers. The trajectories of soil particles beneath the wheels are approximated by an exponential function and the fluctuations in the drawbar pull are represented by a sinusoidal function. The amplitude and basic wavelength of the fluctuation in the drawbar pull are discussed for both types of wheels.  相似文献   

12.
In this study, a fuzzy-based automatic slip control system was developed for agricultural tractors. The developed system continuously measures the amount of slip that occurs during the tillage activities and automatically changes the operation depth of tillage equipment according to the amount of increase in the slip value. The amount of slip occurring on the driving wheels was applied as a separate input to the designed fuzzy control system (FCS) and at the fuzzy rule base, it was decided how much the depth of tillage would be reduced. The system was mounted on an agricultural tractor and trials were carried out in actual field conditions. The results of the tillage trials performed with the developed FCS were compared separately with the results of the tillage trials performed with an operator control (OC) without using any automatic control system. As a result of the trials, compared to the operator control, it was determined that in the tillage activities carried out with FCS, there were 42% decreases in slip values, 30% decreases in draft force values, 44% decreases in fuel consumption values and 5% increases in field work performance values. It was also observed that there were 10% changes in tillage depth.  相似文献   

13.
采用直流力矩电动机和数字控制技术,拖动一个装有挠性陀螺、石英挠性加表的转盘连续转动四个位置,测量每个位置上陀螺和加速度计的输出,从而计算出定位面和北向的夹角。推导了北向角计算公式、方位角增量计算公式,分析了系统组成,给出了原理框图。为了缩短寻北时间,克服地基抖动和风扰等影响,采用数字滤波、平稳过程建模、小波滤波、Kalman滤波等技术对陀螺信号进行预处理。试验证明:求平均和经典数字滤波可减小陀螺数据方差10倍左右,Kalman滤波可以减小30倍。目前该系统样机已经研制成功,控制器和计算平台采用PC104,显示器为可在野外使用的EL屏,4×4小键盘采用不锈钢防水设计,具有抗低温能力,系统内置GPS接受机、蓄电池,可实现野外定位定向自动化。测试表明:样机定向精度优于2 mil,定向时间小于2.5 min。  相似文献   

14.
 An LIF line scan system is presented and used to obtain unobtrusive mean and angle resolved concentration measurements in a continuously operated stirred tank agitated with a single Rushton turbine. The measurements showed that the trailing vortex structures caused regions of elevated concentrations gradients and concentration fluctuations between blade passages. In addition, on the centre line of the tank, whilst macromixing was always complete, micromixing was less complete than in other regions of the tank. Compared to point measurement techniques, the line scan system made data collection more comprehensive and convenient and the determination of a line of data allows the possibility of the correction of beam attenuation and the extension of the technique to a larger scale. Received: 25 July 1997/Accepted: 15 October 1997  相似文献   

15.
In this paper a new finite element approach for the solution of the Timoshenko beam is shown. Similarly to the Euler-Bernoulli beam theory, it has been considered a single fourth order differential equation governs the equilibrium of the Timoshenko beam. The results obtained by this approach are very good, both in terms of accuracy and computational effort.  相似文献   

16.
Mathematical models capable of describing the interaction between traction devices and soils have been effective in predicting the performance of off-road vehicles. Such a model capable of predicting the performance of bias-ply tires in agricultural soils was first developed by Brixius [Brixius WW. Traction prediction equations for bias-ply tires. ASAE Paper No. 871622. St. Joseph, MI: ASAE; 1987]. When the soil and vehicle parameters are known, this model uses an iterative procedure to predict the tractive performance of a vehicle including pull, tractive efficiency, and motion resistance. Al-Hamad et al. [Al-Hamad SA, Grisso RD, Zoz FM, Von Bargen K. Tractor performance spreadsheet for radial tires. Comput Electron Agr 1994:10(1):45–62] modified the Brixius equations to predict the performance of radial tires. Zoz and Grisso [Zoz, FM, Grisso RD. Traction and tractor performance. ASAE Distinguished Lecture Series #27. St. Joseph, MI: ASAE; 2003] have demonstrated that the use of spreadsheet templates is more efficient than the original iterative procedure used to predict the performance of 2WD and 4WD/MFWD tractors. As tractors equipped with rubber-tracks are becoming popular, it is important that we have the capability to predict the performance for off-road vehicles equipped with rubber-tracks during agricultural operations. This paper discusses the development of an empirical model to accomplish this goal and its validity by comparing the predicted results with published experimental results.  相似文献   

17.
本文在建立了受损构件和受损结构体系残余承载力模糊评估理论的基础上,以这两个方法的主要原理为思想,设计了一智能评估专家系统。作者在文中着重给出了知识库、推理机和系统流程图的构造,并结合实例,说明了该专家系统的应用。  相似文献   

18.
针对非结构化环境下移动机器人组合导航系统中存在的时变或非高斯噪声,将秩滤波器(rank Kalman filter,RKF)与交互式多模型算法(interactive multiple model filter,IMM)相结合,提出一种交互式多模型秩滤波算法(IMM-RKF)。秩滤波根据秩统计量相关原理确定采样点和权值,可适用于具有非高斯噪声的非线性系统;交互式多模型算法是解决结构和参数易发生变化系统中状态估计问题的重要途径,能够抑制组合导航系统中时变噪声引起的导航参数估计误差。仿真实验表明,相比于交互式多模型扩展卡尔曼滤波(IMM-EKF)和交互式多模型无迹卡尔曼滤波(IMM-UKF),提出的IMM-RKF算法能够提高组合导航系统姿态、速度和位置估计精度。  相似文献   

19.
A simplified, closed-form version of the basic mechanics of a driven rigid wheel on low-cohesion deformable terrain is presented. This approach allows the formulation of an on-line terrain parameter estimation algorithm, which has important applications for planetary exploration rovers. Analytical comparisons of the original and simplified equations are presented, and are shown to closely agree. Experimental results from a single-wheel testbed operating in dry sand shows that the simplified equations can be used for mobility prediction with good accuracy. Methods for incorporating the simplified equations into an on-line terrain parameter algorithm are discussed.  相似文献   

20.
光纤陀螺惯性测量组合的数字温控系统设计   总被引:1,自引:1,他引:1  
光纤陀螺惯性测量组合的测量精度会受到环境温度变化的影响。采用温度控制手段能够有效解决这一问题。提出了一种基于分级控制、分段控制和闭环控制思想的温控方案,并在此基础上设计了一种DSP+FPGA架构的数字温度控制电路,实现了温控电路的整体结构和工作流程,说明了以FuzzyPID算法为核心的温度控制算法原理。试验结果表明,系统具有速度快、精度高等优点,为解决惯性测量组合启动后缩短惯性器件热平衡过程,迅速进入稳定工作状态提供了一种实用方法,也为类似的惯性测量组合温度控制系统提供了有益参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号