首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanoparticles (NPs) are considered as an important environmental risk factor for cognitive impairments and neurodegenerative disorders. Recent evidences have reported a glutamatergic system response against air-borne NPs. Zinc and copper oxides (ZnO and CuO) NPs are the most common metal oxide NPs in industries. The effects of these NPs on hippocampal voltage-dependent ion channels and spatial cognition have been previously studied. However, there is a lack of evidence regarding the effects of ZnO and CuO NPs on glutamatergic synapse neurotransmission in central nervous system. In the present study, the effects of ZnO and CuO NPs on glutamate (Glu) release and uptake have been investigated in isolated nerve terminals (synaptosomes). Our findings have shown that, even in high doses of ZnO and CuO NPs, no significant effect on Glu release is observed. However, a decrease has been observed in uptake of Glu. Hence, ZnO and CuO NPs can be considered as hazardous agents inducing neurodegenerative disorders through Glu excitotoxicity.  相似文献   

2.
In the present study copper oxide nanoparticles (CuO NPs) were synthesized using a hydrothermal method with ranolazine as a shape-directing agent. Ranolazine-functionalized CuO NPs were characterized by various analytical techniques such as scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). The SEM pattern confirmed the morphology of ranolazine-functionalized CuO NPs with well-defined rice-like structures. FTIR spectroscopy confirmed the interaction between CuO NPs and ranolazine. The XRD analysis indicated that the structure of ranolazine-functionalized CuO NPs was monoclinic crystalline and the size ranged between 9 and 18 nm with an average particle size of 12 nm. The smaller size range of CuO NPs gave a large surface area that enhanced the efficiency of these catalysts employed for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in the H 2 O system. In homogeneous catalysis, results showed that 50 μL of CuO NPs was required in the presence of NaBH4 for 99% reduction of 4-NP in 240 s. On the other hand, for heterogeneous catalysis, 0.5 mg of CuO NPs was used in the presence of NaBH4 for 99% catalytic reduction of 4-NP to 4-AP in 320 s. The rate of reaction for homogeneous catalysis and heterogeneous catalysis was determined from the plots of In(Ct /C0) of 4-NP versus time (s), which showed good linearity with values of 1.3 × 10 -2 and 8.8 × 10 -3 s -1 . respectively. The high-quality catalytic efficiency, good reusability, nontoxic nature, and low cost are favorable properties of the synthesized CuO NPs for use as efficient catalysts for reduction of 4-AP to 4-NP in both homogeneous and heterogeneous media.  相似文献   

3.
The increased utilization of CuO nanoparticles (CuO NPs) in various fields has raised concerns about their discharge into water containing a wide range of organic ligands. Moreover, the adsorption of these ligands can stabilize the CuO NPs in drinking water treatment plants. Thus, their removal from potable water is important to mitigate the risk to humans. The present study explored the efficacy of the coagulation–sedimentation (C/S) process for the removal of tannic acid (TA)-stabilized CuO NPs using polyaluminum ferric chloride (PAFC) as a coagulant. Moreover, the influence of process conditions (stirring speed) and water chemistry (i.e., pH and ionic strength (IS)) were also investigated to determine their impact on removal. The results showed that stirring speed in the reaction phase significantly affected the removal due to increased flocculation compared with stirring speed in the mixing phase. In addition, pH and IS affect the colloidal stability and removal efficiency of CuO NPs. A relatively better removal performance (<99%) of CuO NPs was found at lower coagulant dosage in the pH range 6–8. The addition of organic ligands reversed the surface charge potential and enhanced the colloidal stability of CuO NPs, resulting in the destabilization of TA-CuO NPs, thereby reducing the optimum PAFC dosage for removal. By contrast, the IS above the critical coagulation concentration decreased the removal efficiency due to inhibition of the ionic activity of PAFC hydrolysate in the aqueous environment. Fourier transform infrared findings of TA-CuO NPs composite flocs suggest that the primary removal mechanism might be mediated via the combined effect of neutralization, complexation as well as adsorption.  相似文献   

4.
In the present study, montmorillonite (MMT) nanoclay and copper oxide (CuO) nanoparticles (NPs) reinforced polyvinylchloride (PVC) based flexible nanocomposite films were prepared via solvent casting technique. Using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Scanning electron microscopy (SEM) and thermo-gravimetric analysis (TGA), the structural, morphological and thermal properties of PVC/MMT/CuO nanocomposite films with various loadings of CuO NPs and MMT were investigated. These studies suggested that by the addition of dual nanofillers in the polymer matrix some structural modifications occurred owing to the homogenous dispersion of MMT and CuO NPs within the PVC matrix. The TGA results reveal that the addition of CuO NPs and MMT considerably improved the thermal stability of the nanocomposites. The EMI shielding effectiveness (SE) of nanocomposites was examined in the X-band (8–12 GHz) and Ku-band (12–18 GHz) frequency regions. The EMI SE values were found to be −30 dB (X-band) and −35 dB (Ku-band) for nanocomposites containing 0.3 wt% of CuO NPs and 4.7 wt% of MMT respectively while the shielding was found to be absorption dominant. These results emphasize that PVC/MMT/CuO nanocomposite films can be used as a potential EMI shielding material.  相似文献   

5.
Antibiotic resistance has prompted the search for new agents that can inhibit bacterial growth. We recently reported on the antibiofilm activities of nanosized ZnO and CuO nanoparticles (NPs) synthesized by using sonochemical irradiation. In this study, we examined the antibacterial activity of ZnO and CuO NPs in a powder form and also examined the antibiofilm behavior of teeth surfaces that were coated with ZnO and CuO NPs using sonochemistry. Free ZnO and CuO NPs inhibited biofilm formation of Streptococcus mutans . Furthermore, by using the sonochemical procedure, we were able to coat teeth surfaces that inhibited bacterial colonization.  相似文献   

6.
The present research highlights physical significance of green combination of metal oxide nanomaterials utilizing medicinal plant which has widely analyzed in different medical applications i.e., medicinal science, therapeutics. In this paper, we discussed environmentally benign approach for synthesizing silver doped copper oxide nanoparticles (Ag–CuO NPs) utilizing (ACLE). Scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) were utilized to confirm the size, crystalline structure and surface morphology of the obtained nanomaterials. The monoclinic crystalline structure of the Ag–CuO NPs as produced was revealed by XRD patterns. Morphological analysis disclosed the nano-based spherical configuration of Ag–CuO NPs, as well as their morphology and elemental composition. The anti-diabetic effect of Ag–CuO NPs was further investigated utilizing a yeast cell model and amylase inhibition. Here, a decrease in intracellular glucose and a delay in carbohydrate digestion indicate promising antidiabetic action. Furthermore, the prepared nanomaterial showed anticancer potential against the MCF-7 cancer cell line, with an IC 50 value of 11.21 g/ml.  相似文献   

7.
《Electroanalysis》2017,29(8):1854-1859
A carbon paste electrode modified with 1‐butyl‐3‐methylimidazolium hexafluorophosphate ionic liquid (BMIPF6) and CuO nanoparticles (CuO/NPs) (CPE/BMIPF6/CuO/NPs) was fabricated and used for square wave voltammetric analysis of levodopa in the presence of vitamin B6. The elemental analysis, SEM and XRD methods were used for characterization of synthesized CuO nanoparticle. CPE/BMIPF6/CuO/NPs exhibited high electrical conductivity toward the electro‐oxidation of levodopa at a pH=7.0 as best experimental condition. Using CPE/BMIPF6/CuO/NPs the levodopa and vitamin B6 peaks are separated and oxidized at potentials of 0.565 V and 0.835 V, respectively; hence levodopa can be detected in the presence of vitamin B6. The electrochemical response shows a linear relationship from concentration of levodopa and vitamin B6 in the ranges of 0.06‐1000 μM and 0.1‐700.0 μM, respectively. Finally, CPE/BMIPF6/CuO/NPs were applied as high performance tool for determination of levodopa and vitamin B6 in real samples.  相似文献   

8.
The progress in nanomedicine (NM) using nanoparticles (NPs) is mainly based on drug carriers for the delivery of classical chemotherapeutics. As low NM delivery rates limit therapeutic efficacy, an entirely different approach was investigated. A homologous series of engineered CuO NPs was designed for dual purposes (carrier and drug) with a direct chemical composition–biological functionality relationship. Model-based dissolution kinetics of CuO NPs in the cellular interior at post-exposure conditions were controlled through Fe-doping for intra/extra cellular Cu2+ and biological outcome. Through controlled ion release and reactions taking place in the cellular interior, tumors could be treated selectively, in vitro and in vivo. Locally administered NPs enabled tumor cells apoptosis and stimulated systemic anti-cancer immune responses. We clearly show therapeutic effects without tumor cells relapse post-treatment with 6 % Fe-doped CuO NPs combined with myeloid-derived suppressor cell silencing.  相似文献   

9.
Synthesis of pure Zinc oxide (ZnO), Copper oxide (CuO) nanoparticles (NPs) and their (ZnO/CuO) nanocomposites (NCs) in 1:1 M ratio were successfully prepared by co-precipitation method. The structural properties of the as synthesized nanoparticles and nanocomposite materials were investigated using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) techniques. Optical band-gap studies were done using UV–Visible absorption spectroscopy. Photovoltaic properties of pure ZnO NPs, CuO NPs and ZnO/CuO NCs coated over a single-crystalline silicon solar cell were carried out to compare improvement of light-conversion efficiency in coated solar cell. The maximum light conversion efficiencies were found to be of 8.02% for CuO (3 mg/ml concentration) and 7.28% for ZnO NPs (3 mg/ml concentration), whereas that of mixed metal nanocomposite CuO/ZnO NCs was found to be 7.62%. at very low concentration of 1 mg/ml. This indicates with low concentration of mixed metal NCs an improvement in light efficiency can be obtained. The enhancement in efficiency could be due to formation of p - n heterojunction by CuO/ZnO NCs composites which enhances the number of electrons and holes participating in conduction on the surface.  相似文献   

10.
In this Investigation, the CuO nanoparticles (NPs) were treated by vitamin B1 as a biomolecule modifier. The CuO NPs were used as an appropriate filler for fabrication of poly(vinyl alcohol) (PVA) nanocomposites (NCs). Then, NCs with various ratios (3, 5, and 7wt%) of modified CuO were fabricated under ultrasonic irradiation and their properties were compared with pure PVA. Several techniques were used for characterization of NCs. Field emission scanning electron microscopy and transmission electron microscopy analysis indicated that NPs have proper compatibility with the PVA matrix. Thermal gravimetric analysis results confirmed that NCs displayed higher thermal stability than neat PVA. Also, the addition of the NPs into the PVA matrix improved the optical and mechanical behaviors. Finally, the contact angle measurements verified that the hydrophilicity decreased for different ratios of modified NPs loaded in the polymer matrix. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
The progress in nanomedicine (NM) using nanoparticles (NPs) is mainly based on drug carriers for the delivery of classical chemotherapeutics. As low NM delivery rates limit therapeutic efficacy, an entirely different approach was investigated. A homologous series of engineered CuO NPs was designed for dual purposes (carrier and drug) with a direct chemical composition–biological functionality relationship. Model‐based dissolution kinetics of CuO NPs in the cellular interior at post‐exposure conditions were controlled through Fe‐doping for intra/extra cellular Cu2+ and biological outcome. Through controlled ion release and reactions taking place in the cellular interior, tumors could be treated selectively, in vitro and in vivo. Locally administered NPs enabled tumor cells apoptosis and stimulated systemic anti‐cancer immune responses. We clearly show therapeutic effects without tumor cells relapse post‐treatment with 6 % Fe‐doped CuO NPs combined with myeloid‐derived suppressor cell silencing.  相似文献   

12.
The present study deals with the synthesis of CuO‐NPs via green route and investigated its application for removal of Cr(VI) from aqueous solutions. The experimental parameters were optimized through Box–Behnken Design (BBD) of response surface methodology for the optimum response. The adsorption equilibrium data was well fitted to Freundlich isotherm model and the kinetics was explained through pseudo‐second‐order kinetic model. The overall process was feasible, spontaneous and exothermic. Linear approach for analysing the isotherm as well as kinetic parameters was found more appropriate than the non‐linear approach. The adsorbent was successfully regenerated and reused up to five consecutive cycles without significant loss in removal capacity. The experimental results exhibited that CuO‐NPs can be a good alternative for Cr(VI) removal from aqueous solutions.  相似文献   

13.
Journal of Solid State Electrochemistry - In the present investigation, we have synthesized samarium (Sm) nanoparticles (NPs) and anchored them onto the surface of CuO:CoO nanostructure (NS) by...  相似文献   

14.
In this paper a novel simple method for preparing two different catalysts with various‐valences copper was reported. Carbon nanofibers supported copper‐cuprous oxide nanoparticles (Cu‐Cu2O NPs/CNFs) and copper oxide nanoparticles (CuO NPs/CNFs) through electrospinning, adsorption and reduction in the high‐pressure hydrogenation and the high‐temperature calcination methods. These catalysts were investigated by a series of characterizations and were applied in reaction in nitrogen atmosphere, which had a good catalytic activity and selectivity of benzaldehyde for the reaction. Above all, the new study has been certified clearly, in which Cu‐Cu2O NPs/CNFs and CuO NPs/CNFs composite catalysts enhanced the generation of benzaldehydeand the excellent catalytic properties were exhibited.  相似文献   

15.
The cloud point extraction (CPE) of commercial copper(II) oxide nanoparticles (CuO NPs, mean diameter of 28 nm) in water samples was fully investigated. Factors such as Triton X-114 (TX-114) concentration, pH, incubation temperature and time, were optimized. The effects of CuO NP behavior like agglomeration, dissolution, and surface adsorption of natural organic matter, Cu2+, and coating chemicals, on its recovery were studied. The results indicated that all the CPE factors had significant effects on the extraction efficiency. An enrichment factor of ∼89 was obtained under optimum CPE conditions. The hydrodynamic diameter of CuO NPs increased to 4–5 μm upon agglomeration of NP-micelle assemblies, and decreased at pH >10.0 at which the extraction efficiency was also lowered. The solubility and therefore, the loss of NPs were greatly enhanced at pH <8.5 and in the first 60 min of incubation, whereas it declined at elevated incubation temperatures. Our results showed that the dissolved organic carbon (DOC) >5 mg C L−1 and Cu2+ >2 times that of CuO NPs, lowered and enhanced the extraction efficiency, respectively. Pre-treatment of samples with 3% w v−1 of hydrogen peroxide and 10 mM of ethylenediaminetetraacetic acid minimized the interferences posed by DOC and Cu2+, respectively. The decrease in CPE efficiency was also evident for ligands like poly(ethylene glycol). The TX-114-rich phase could be determined with either inductively coupled plasma mass spectrometry following microwave digestion, or graphite furnace atomic absorption spectrometry. The detection limits for CuO NPs were 0.02 and 0.06 μg L−1 using these techniques, respectively. The optimum sample pre-treatment and CPE conditions were successfully applied to the river and wastewater samples. The relative recoveries of CuO NPs spiked at 5–100 μg L−1 (as Cu) in these samples were in the range of between 59.2 and 108.2%. The approach demonstrates a robust analytical method for detecting trace levels of CuO NPs at their original states and assessing their exposure risks in real aquatic environments.  相似文献   

16.
A zirconium‐based metal–organic framework, UiO‐66‐NH2, modified by melamine (Mlm) was used as a support for CuO nanoparticles (NPs). Melamine offered a platform for uniform and homogeneous distribution of NPs on the surface of the frameworks and made a strong bonding to the NPs to avoid undesirable leaching. UiO‐66‐NH2‐Mlm/CuO NPs were used for the Buchwald–Hartwig C–N cross‐coupling reaction to synthesize arylated anilines from phenyl iodide, bromide, and chloride and primary and secondary amines in DMF at 110°C. The catalyst was also employed for the synthesis of 2‐substituted benzimidazole derivatives from various aromatic aldehydes and o‐phenylenediamine in the absence of an oxidant in EtOH at room temperature. The catalyst was recyclable and reusable for several times and exhibited good stability (examined by BET, XRD, and SEM–EDX) in reaction conditions.  相似文献   

17.
Magnetically separable CuO nanoparticles supported on graphene oxide (Fe3O4 NPs/GO-CuO NPs) is synthesized and characterized for the preparation of propargylamines in EtOH, at 90℃. Fe3O4 NPs/GO-CuO NPs is found to be an efficient catalyst for the A3-coupling of aldehydes, amines, and alkynes through C-H activation. Both aromatic and aliphatic aldehydes and alkynes are combined with secondary amines to provide a wide range of propargylamines in moderate to excellent yields.  相似文献   

18.
In this research, we strived to utilize waste fish scale (labeo rohita) for synthesizing CuO nano-particles (CuO NPs), which gained much attention due to its distinctive properties and versatile applications. Upon the heat treatment, the collagen content of the fish scale got transformed into gelatin which in turn converted the precursor material into CuO NPs. The X-Ray diffraction (XRD) analysis confirmed the formation of CuO NPs and revealed the structure to be of monoclinic lattice. The structural parameters i.e. crystallite size, lattice parameters, microstrain, dislocation density was evaluated for the synthesized CuO NPs using the XRD data. Scherrer’s Method (SM), Scherrer Equation Average Method (SEAM), Linear Straight Line Method (LSLM), Straight Line Passing the Origin Method (SLPOM), Monshi Scherrer Method (MSM), Williamson-Hall Method (WHM), Size-Strain Plot Method (SSPM), Halder-Wagner Method (HWM) was exploited for the estimation of crystallite size. According to the calculations, the crystallite size was found to be 87 nm, 41 nm, 1980 nm, 62 nm, 66 nm, 28 nm, 13 nm, 13 nm respectively and the dislocation density was found to be 1.32 × 10-4, 5.95 × 10-4, 0.002 × 10-4, 2.60 × 10-4, 2.29 × 10-4, 12.75 × 10-4, 59.17 × 10-4 and 59.17 × 10-4 respectively. UV–Vis absorption analysis also confirmed the formation of CuO NPs based on the absorption peak at 262 nm (λmax) and Tauc Plot method was used to calculate the optical band gap which was 3.84 eV. Functional group, especially the Cu-O bonding was confirmed by the Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) data. Field Emission Scanning Electron Microscopy (FESEM) showed three different shapes of CuO NPs which was also confirmed by Transmission Electron Microscopy (TEM). Particle size was determined based on FESEM and TEM image using imageJ software and also by the Dynamic Light Scattering (DLS) technique. Thermal analysis showed a four stage weight loss in case of Thermogravimetric (TGA) analysis and three conversion steps was observed in Differential Scanning Calorimetric (DSC) analysis. Such synthesis pathway is evidently green and facile for synthesizing CuO NPs with potentiality of various applications and also utilization of waste fish scale is a perquisite.  相似文献   

19.
Hydrophilic poly(vinylidene fluoride) (PVDF) nanocomposite ultrafiltration (UF) membranes with excellent antifouling and antibiofouling characteristics are fabricated by employing polyhexanide coated copper oxide nanoparticles (P–CuO NPs). The presence of P–CuO NPs is played a significant role in altering the PVDF membrane matrix and probed by XRD, FTIR, FESEM and contact angle analysis. The PVDF/P–CuO nanocomposite membranes exhibited an outstanding antifouling performance indicated by the superior pure water flux, effective foulant separation and maximum flux recovery ratio during UF experiments as a result of the formation of the hydrophilic and more porous membrane due to the uniform distribution of P–CuO NPs. Particularly, the PVDF/P–CuO-3 membrane showed higher PWF of 152.5 ± 2.4 lm−2h−1 and porosity of 64.5% whereas the lower contact angle of 52.5°. Further, it showed the higher rejection of 99.5 and 98.4% and the flux recovery ratio of 99.5 and 98.5% respectively for BSA and HA foulants, demonstrated its increased water permeation, foulant separation and antifouling behavior. Further, the decent antibacterial activity is showed by the PVDF/P–CuO nanocomposite membranes with the formation of halo-zone around the membrane when exposed to the bacterial medium demonstrated that, by this process an antibacterial water treatment membrane can be developed by simple phase inversion technique with good membrane stability.  相似文献   

20.
A highly sensitive electrochemical immunoassay method for detection of H1N1 influenza virus with the signal amplification of CuO nanoparticles (NPs) has been demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号