首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
O2 concentration near Pt surface during oxygen reduction reaction (ORR) in 0.1 M HClO4 has been monitored by rotating ring-disk electrodes system. At 0.8 V < E < 1.0 V (vs. RHE), O2 concentration near Pt surface increases with potential accompanying with the decrease of ORR current at the disk electrode; O2 concentration in the negative-going scan is larger than that at the same potential in the positive-going scan, while ORR current shows the opposite trend at ω > 400 rpm. At E > 0.8 V accumulation of Oad|OHad at Pt disk electrode with ORR time is evident, revealing that Oad|OHad formation rate is faster than that for the removal of OHad to H2O under such conditions. At relatively lower rotation speed and faster scan rate, the cathodic current during ORR in the negative-going scan can be larger than that in the positive-going scan with a current peak at ca. 0.8 V, which is attributed to the superimposition of ORR current increase due to change of O2 concentration near the surface and the additional reduction of Oad|OHad formed from decomposed O2 at higher potentials.  相似文献   

2.
We characterized the electrocatalytic activity of platinum electrode modified by underpotential deposited lead (PtPbupd) for a formic acid (HCOOH) oxidation and investigated the influence on the power performance of direct formic acid fuel cells (DFAFC). Based on the electrochemical analysis using cyclic voltammetry and chronoamperometry, PtPbupd electrode modified by underpotential deposition (UPD) exhibited significantly enhanced catalytic activity for HCOOH oxidation below anodic overpotential of 0.4 V (vs. SCE). Multi-layered PtPbupd electrode structure of Pt/Pbupd/Pt resulted in more stable and enhanced performance using 50% reduced loading of anode catalyst. The performance of multi-layered PtPbupd anode is about 120 mW/cm2 at 0.4 V and it also showed a sustainable cell activity of 0.52 V at an application of constant current loading of 110 mA/cm2.  相似文献   

3.
Hydrogen peroxide-fuel cell (H2O2-FC) possesses a theoretical power generating efficiency of 119% much larger than hydrogen/oxygen (H2/O2)-FC (82.9%) with a thermodynamic electromotive force of 1.09 V. This communication presents the prototype of H2O2-photofuel cell (PFC) without using noble metal catalyst. The H2O2-PFC is comprised of mesoporous anatase TiO2 nanocrystalline film coated on fluorine-doped tin oxide electorode (mp-TiO2/FTO, photoanode), glassy carbon (cathode), and an aqueous electrolyte solution containing 0.1 M NaClO4 and 0.1 M H2O2. Under UV-light irradiation, the H2O2-PFC stably works, providing a short-circuit current of 0.24 mA cm 2 and an open-circuit voltage of 0.72 V at ambient temperature and pressure, while current hardly flows in the dark. Further, the PFC responds to visible-light due to the charge-transfer complex formation of H2O2 on the TiO2 surface.  相似文献   

4.
Experiments aimed at ameliorating carbon dioxide (CO2) into methanol were explored using pyridoxine, a member of the vitamin B6 family, to enhance the reduction process. At a platinum electrode, an aqueous solution (pH  5) of pyridoxine showed a quasi-reversible redox couple with the cathodic peak detected at ca. − 0.55 V vs. Ag/AgCl (3 M KCl) in the presence of CO2 and argon. An increase in the corresponding cathodic peak current was observed following saturation of the solution with CO2 using a Pt electrode, but with no detectable reduction current recorded at a glassy carbon electrode for the same system. Confirmation of methanol formation during the pyridoxine-assisted CO2 reduction was conducted by using gas chromatography analysis of the electrolyzed solutions and faradic yields of ca. 5% were afforded. A combination of the results from the cyclic voltammetry and constant current chronopotentiometry experiments revealed an overpotential of ≤ 200 mV was required. The results indicate a potential utility of pyridoxine as an alternative reagent to the more toxic pyridine during the electrochemical reduction of CO2.  相似文献   

5.
Poly (neutral red) nanowires (PNRNWs) have been synthesized for the first time by the method of cyclic voltammetric electrodeposition using porous anodic aluminum oxide (AAO) template and were examined by scanning electron microscopy (SEM) and transmission electron microscope (TEM). Moreover, horseradish peroxidase (HRP) was encapsulated in situ in PNRNWs (denoted as PNRNWs–HRP) by electrochemical copolymerization for potential biosensor applications. The PNRNWs showed excellent efficiency of electron transfer between the HRP and the glassy carbon (GC) electrode for the reduction of H2O2 and the PNRNWs–HRP modified GC electrode showed to be excellent amperometric sensors for H2O2 at −0.1 V with a linear response range of 1 μM to 8 mM with a correlation coefficient of 0.996. The detection limit (S/N = 3) and the response time were determined to be 1 μM and <5 s and the high sensitivity is up to 318 μA mM−1 cm−2.  相似文献   

6.
Hydrogen adsorption isotherms, evaluated by combination of cyclic voltammetry and chronoamperometry, are reported on Pt(1 1 1) and Pt(1 0 0) surfaces in 0.1 M HClO4. We found that at E > 0.05 V Pt(1 1 1) and Pt(1 0 0) are only partially covered by the adsorbed hydrogen (Had). On both surfaces, a full monolayer of the adsorbed hydrogen is completed at −0.1 V, i.e. the adsorption of atomic hydrogen is observed in the hydrogen evolution potential region. We also found, that the activity of the hydrogen oxidation reaction is mirrored by the shape of the hydrogen adsorption isotherms, implying that Had is in fact a spectator in the HOR.  相似文献   

7.
A new ferrocenecarboxylic acid–C60 composite (Fc–C60) has been synthesized by controlled potential electrolysis. A composite modified glassy carbon electrode has been prepared based on its good electrochemical activity. The modified electrode in 0.1 M NaClO4 solution shows a reversible oxidation wave at E1/2 = 0.32 V (vs. SCE) attributed to the oxidation of the ferrocene entity and a quasi-reversible reduction wave of C60 entity at E1/2 = ?0.54 V (vs. SCE). Electrocatalytic studies show that Fc–C60 at the modified electrode can mediate the reduction of hydrogen peroxide (H2O2), and a broad linear range from 1.2 μM to 21.9 mM for H2O2 were obtained with a determination limit of 2.5 × 10?7 M by amperometry.  相似文献   

8.
We report herein a simple device for rapid biosensing consisting of a single microfluidic channel made from poly(dimethylsiloxane) (PDMS) coupled to an injector, and incorporating a biocatalytic sensing electrode, reference and counter electrodes. The sensing electrode was a gold wire coated with 5 nm glutathione-decorated gold nanoparticles (AuNPs). Sensitive detection of H2O2 based on direct bioelectrocatalysis by horseradish peroxidase (HRP) was used for evaluation. HRP was covalently linked the glutathione–AuNPs. This electrode presented quasi-reversible cyclic voltammetry peaks at ?0.01 V vs. Ag/AgCl at pH 6.5 for the HRP heme FeIII/FeII couple. Direct electrochemical activity of HRP was used to detect H2O2 at high sensitivity with a detection limit of 5 nM in an unmediated system.  相似文献   

9.
Oxygen reduction reaction (ORR) has been studied on the low index planes of Pd modified with a monolayer of Pt (Pt/Pd(hkl)) in 0.1 M HClO4 with the use of hanging meniscus rotating disk electrode. The activity for ORR on bare Pd(hkl) electrode depends on the surface structure strongly, however, voltammograms of ORR on Pt/Pd(hkl) electrodes do not depend on the crystal orientation. The specific activities of Pt/Pd(hkl) electrodes at 0.90 V (RHE) are higher than that on Pt(1 1 0) which has the highest activity for ORR in the low index planes of Pt. The mass activity on Pt/Pd(hkl) electrode is 7 times as high as a commercial Pt/C catalyst.  相似文献   

10.
Some oxide catalysts, such as RuO2/Ti, IrO2/Ti and IrM(M: Ru, Mo, W, V)Ox/Ti binary oxide electrodes, were prepared by using a dip-coating method on a Ti substrate. Their catalytic behavior for the oxygen reduction reaction (ORR) was evaluated by cyclic voltammetry in 0.5 M H2SO4 at 60 °C. These catalysts were found to exhibit considerably high activity, and the most active one among them was Ir0.6V0.4O2/Ti prepared at 450 °C, showing onset potential for the ORR at about 0.86 V–0.90 (vs RHE).  相似文献   

11.
Here we demonstrate Na4Mn9O18 as a sodium intercalation positive electrode material for an aqueous electrolyte energy storage device. A simple solid-state synthesis route was used to produce this material, which was then tested electrochemically in a 1 M Na2SO4 electrolyte against an activated carbon counter electrode using cyclic voltammetry and galvanostatic cycling. Optimized Na4Mn9O18 was documented as having a specific capacity of 45 mAh/g through a voltage range of 0.5 V, or an equivalent specific capacitance of over 300 F/g. With the proper negative:positive electrode mass ratio, energy storage cells capable of being charged to at least 1.7 V without significant water electrolysis are documented. Cycling data and rate studies indicate promising performance for this unexplored low-cost positive electrode material.  相似文献   

12.
Ir–Ni oxide nanoparticles were simply prepared by stirring IrCl3 and NiCl2 precursors in aqueous base under air. The activities of a series of IrNiyOx nanoparticles with different Ir-to-Ni ratios were measured toward water oxidation in 0.1 M H2SO4. The Ir-to-Ni ratio was 1:0.125 in the most active catalyst (mass normalized > 140 A g 1 Ir, electrochemically active surface area normalized > 203 A mmol 1Ir). The stabilized potential for the galvanostatic oxidation (1 mA cm 2geometric) was as low as 1.51 VRHE, corresponding to 0.28 V in overpotential.  相似文献   

13.
In this communication, a hydrogen peroxide (H2O2) sensor based on self-assembled Prussian Blue (PB) modified electrode was reported. Thin film of PB was deposited on the electrode by self-assembly process including multiple sequential adsorption of ferric ions and hexacyanoferrate ions. The as-prepared PB modified electrode displayed sufficient stability for practical sensing application. At an applied potential of ?0.05 V vs. Ag/AgCl (sat. KCl), PB modified electrode with 30 layers exhibited a linear dependence on H2O2 concentration in the range of 1 × 10?6–4 × 10?4 M (r = 0.9998) with a sensitivity of 625 mA M?1 cm?2. It was found that the sensitivity of H2O2 sensors could be well controlled by adjusting the number of deposition cycles for PB preparation. This work demonstrates the feasibility of self-assembled PB modified electrode in sensing application, and provides an effective approach to control the sensitivity of PB-based amperometric biosensors.  相似文献   

14.
A high specific capacitance was obtained for α-Co(OH)2 potentiostatically deposited onto a stainless-steel electrode in 0.1 M Co(NO3)2 electrolyte at −1.0 V vs. Ag/AgCl. The structure and surface morphology of the obtained α-Co(OH)2 were studied by using X-ray diffraction analysis and scanning electron microscopy. A network of nanolayered α-Co(OH)2 sheets was obtained; the average thickness of individual α-Co(OH)2 sheets was 10 nm, and the thickness of the deposit was several micrometers. The capacitive characteristics of the α-Co(OH)2 electrodes were investigated by means of cyclic voltammetry and constant current charge–discharge cycling in 1 M KOH electrolyte. A specific capacitance of 860 F g−1 was obtained for a 0.8 mg cm−2 α-Co(OH)2 deposit. The specific capacitance did not decrease significantly for the active mass loading range of 0.1–0.8 mg cm−2 due its layered structure, which allowed easy penetration of electrolyte and effective utilization of electrode material even at a higher mass. This opens up the possibility of using such materials in supercapacitor applications.  相似文献   

15.
In this paper, we discuss the synthesis and electrochemical properties of a new material based on iron oxide nanoparticles stabilized with poly(diallyldimethylammonium chloride) (PDAC); this material can be used as a biomimetic cathode material for the reduction of H2O2 in biofuel cells. A metastable phase of iron oxide and iron hydroxide nanoparticles (PDAC–FeOOH/Fe2O3-NPs) was synthesized through a single procedure. On the basis of the Stokes–Einstein equation, colloidal particles (diameter: 20 nm) diffused at a considerably slow rate (D = 0.9 × 10? 11 m s? 1) as compared to conventional molecular redox systems. The quasi-reversible electrochemical process was attributed to the oxidation and reduction of Fe3+/Fe2+ from PDAC–FeOOH/Fe2O3-NPs; in a manner similar to redox enzymes, it acted as a pseudo-prosthetic group. Further, PDAC–FeOOH/Fe2O3-NPs was observed to have high electrocatalytic activity for H2O2 reduction along with a significant overpotential shift, ΔE = 0.68 V from ? 0.29 to 0.39 V, in the presence and absence of PDAC–FeOOH/Fe2O3-NPs. The abovementioned iron oxide nanoparticles are very promising as candidates for further research on biomimetic biofuel cells, suggesting two applications: the preparation of modified electrodes for direct use as cathodes and use as a supporting electrolyte together with H2O2.  相似文献   

16.
The charge accumulation due to peroxidase (POD)-catalyzed reduction of H2O2 in a test solution (4 μL) by Os(II) in a POD/PVI[Os(dmebpy)2Cl]-immobilized layer on an electrode (PVI = poly(1-vinylimidazole), dmebpy = 4,4′-dimethyl-2,2′-bipyridine) was monitored potentiometrically for the detection of H2O2. Before potentiometry, the Os(II)/Os(III) ratio of the modified electrode was controlled by pre-electrolysis at a given potential in a separated electrolysis cell. The redox potential of the Os polymer film in the test solution shifted to the positive side on the addition of H2O2 and reached a constant value due to the accumulation of Os(III) in the film. The total amount of the accumulated charge was determined from the area of the portion corresponding to the redox potential shift on a reversible cyclic voltammogram recorded separately. The low detection limit (5 pmol H2O2) was realized with 82–90% of the recovery percentage.  相似文献   

17.
In this study, new xanthine biosensors, XO/Au/PVF/Pt and XO/Pt/PVF/Pt, based on electroless deposition of gold(Au) and platinum(Pt) nanoparticles on polyvinylferrocene(PVF) coated Pt electrode for detection of xanthine were presented. The amperometric responses of the enzyme electrodes were measured at the constant potential, which was due to the electrooxidation of enzymatically produced H2O2. Compared with XO/PVF/Pt electrode, XO/Au/PVF/Pt and XO/Pt/PVF/Pt exhibited excellent electrocatalytic activity towards the oxidation of the analyte. Effect of Au and Pt nanoparticles was investigated by monitoring the response currents at the different deposition times and the different concentrations of KAuCl4 and PtBr2. Under the optimal conditions, the calibration curves of XO/Au/PVF/Pt and XO/Pt/PVF/Pt were obtained over the range of 2.5 × 10?3 to 0.56 mM and 2.0 × 10?3 to 0.66 mM, respectively. The detection limits were 7.5 × 10?4 mM for XO/Au/PVF/Pt and 6.0 × 10?4 mM for XO/Pt/PVF/Pt. The effects of interferents, the operational and the storage stabilities of the biosensors and the applicabilities of the proposed biosensors to the drug samples analysis were also evaluated.  相似文献   

18.
PbO2 thin films were prepared by pulse current technique on Ti substrate from Pb(NO3)2 plating solution. The hybrid supercapacitor was designed with PbO2 thin film as positive electrode and activated carbon (AC) as negative electrode in the 5.3 M H2SO4 solution. Its electrochemical properties were determined by cyclic voltammetry (CV), charge–discharge test and electrochemical impedance spectroscopy (EIS). The results revealed that the PbO2/AC hybrid supercapacitor exhibited large specific capacitance, high-power and stable cycle performance. In the potential range of 0.8–1.8 V, the hybrid supercapacitor can deliver a specific capacitance of 71.5 F g?1 at a discharge current density of 200 mA g?1(4 mA cm?2) when the mass ratio of AC to PbO2 was three, and after 4500 deep cycles, the specific capacitance remains at 64.4 F g?1, or 32.2 Wh Kg?1 in specific energy, and the capacity only fades 10% from its initial value.  相似文献   

19.
Poly-anionic deoxyribonucleic acid (DNA) was accumulated on the positively charged surface of carbon ionic liquid electrode (CILE) with N-butylpyridinium hexafluorophosphate (BPPF6) as binder, and then myoglobin (Mb) was immobilized onto the DNA film by electrostatic interaction to form Mb/DNA/CILE electrode. The direct electrochemistry of Mb was then investigated in detail. A pair of well-defined, quasi-reversible cyclic voltammetric peaks of Mb was obtained with the formal potentials (E0′) at ?0.304 V (vs. SCE) in phosphate buffer solution (PBS, pH 7.0). The Mb/DNA/CILE electrode showed excellent electrocatalytic activity to H2O2 and trichloroacetic acid (TCA) in the range of 1.0–160 μmol/L and 0.5–40.0 mmol/L, respectively. The apparent Michaelis–Menten constants (KM) toward H2O2 and TCA were calculated as 0.42 and 0.82 mmol/L. So, the DNA/CILE had potential to study other proteins.  相似文献   

20.
V2O5·0.6H2O nanoribbons were prepared and their electrochemical behaviors in K2SO4 aqueous solution were investigated. Results show for the first time that K+ ions could intercalate/deintercalate reversibly in the V2O5·0.6H2O lattice. An asymmetric supercapacitor activated carbon/0.5 mol/l K2SO4/V2O5·0.6H2O was successfully assembled, which could be cycled reversibly in the voltage region of 0–1.8 V. This supercapacitor presents an energy density of 29.0 Wh/kg based on the total mass of the active electrode materials, a very good rate behavior with energy density of 20.3 Wh/kg at power density of 2 kW/kg, and also a rather good cycling performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号