首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
The expansion of aerosols generated by near infrared (NIR) nanosecond (ns) and femtosecond (fs) laser ablation (LA) of metals at atmospheric pressures was explored by laser-induced scattering. In order to achieve adequate temporal and spatial resolution a pulsed laser source was utilized for illuminating a 0.5 mm-wide cross section of the expanding aerosol. It could, for instance, be shown that NIR-ns-LA under quiescent argon atmosphere provokes the formation of a dense aerosol confined within a radially propagating vortex ring. The expansion dynamics achieved under these conditions were found to be fairly slow whereas the degree of aerosol dispersion for NIR-ns-LA using helium drastically increased due to its lower viscosity. As a consequence, the maximum diameter of expansion differed by a factor of approximately four. The trajectories of aerosol particles generated by NIR-ns-LA using argon could, furthermore, be simulated on the basis of computational fluid dynamics (CFD). For this purpose, a model inspired by the thermal character of NIR-ns-LA taking into account a sudden temperature build-up of 10,000 K at the position of the laser focus was implemented.  相似文献   

2.
Detection efficiencies of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), defined as the ratio of ions reaching the detector and atoms released by LA were measured. For this purpose, LA of silicate glasses, zircon, and pure silicon was performed using nanosecond (ns) as well as femtosecond (fs) LA. For instance, ns-LA of silicate glass using helium as in-cell carrier gas resulted in detection efficiencies between approximately 1E-7 for low and 3E-5 for high mass range elements which were, in addition, almost independent on the laser wavelength and pulse duration chosen. In contrast, the application of argon as carrier gas was found to suppress the detection efficiencies systematically by a factor of up to 5 mainly due to a less efficient aerosol-to-ion conversion and ion transmission inside the ICP-MS.  相似文献   

3.
Relative mass transport efficiencies of near infrared (λ = 795 nm) femtosecond laser generated brass aerosols in helium were measured by ICP-MS applying different ablation cells with short and long washout times. It was found that the transport efficiencies are independent of the cell used within the mutual experimental uncertainties. This finding was confirmed by additional measurements providing the absolute particle mass transport efficiencies of femtosecond laser ablation in He. Here, the transport efficiencies were determined by weighing the samples before and after ablation with a micro-balance, collecting the particles by low-pressure impaction, and evaluating the impacted masses quantitatively by total reflection X-ray fluorescence. Within the experimental uncertainties (± 9–19%) the same absolute transport efficiency (about 77%) was found for all cells applied. This efficiency value can be regarded as a lower limit of the absolute mass transport efficiency since mass losses in the impactor are difficult to quantify.  相似文献   

4.
A 2D high repetition rate femtosecond laser ablation strategy (2-mm wide lane) previously developed for the detection of selenoproteins in gel electrophoresis by inductively coupled plasma mass spectrometry was found to increase signal sensitivity by a factor of 40 compared to conventional nanosecond ablation (0.12-mm wide lane) [G. Ballihaut, F. Claverie, C. Pécheyran, S. Mounicou, R. Grimaud and R. Lobinski, Sensitive Detection of Selenoproteins in Gel Electrophoresis by High Repetition Rate Femtosecond Laser Ablation-Inductively Coupled Plasma Mass Spectrometry, Anal. Chem. 79 (2007) 6874–6880]. Such improvement couldn't be explained solely by the difference of amount of material ablated, and then, was attributed to the aerosol properties. In order to validate this hypothesis, the characterization of the aerosol produced by nanosecond and high repetition rate femtosecond laser ablation of polyacrylamide gels was investigated. Our 2D high repetition rate femtosecond laser ablation strategy of 2-mm wide lane was found to produce aerosols of similar particle size distribution compared to nanosecond laser ablation of 0.12-mm wide lane, with 38% mass of particles < 1 µm. However, at high repetition rate, when the ablated surface was reduced, the particle size distribution was shifted toward thinner particle diameter (up to 77% for a 0.12-mm wide lane at 285 µm depth). Meanwhile, scanning electron microscopy was employed to visualize the morphology of the aerosol. In the case of larger ablation, the fine particles ejected from the sample were found to form agglomerates due to higher ablation rate and then higher collision probability. Additionally, investigations of the plasma temperature changes during the ablation demonstrated that the introduction of such amount of polyacrylamide gel particles had very limited impact on the ICP source (ΔT~ 25 ± 5 K). This suggests that the cohesion forces between the thin particles composing these large aggregates were weak enough to have negligible impact on the ICPMS detection.  相似文献   

5.
Despite the large number of successful applications of laser ablation, elemental and isotopic fractionation coupled to inductively coupled plasma mass spectrometry (ICP-MS) remain as the main limitations for many applications of this technique in the fields of analytical chemistry and Earth Sciences. A substantial effort has been made to control such fractionations, which are well-established features of nanosecond laser ablation systems. Technological advancements made over the past decade now allow the ablation of solids by femtosecond laser pulses in the deep ultraviolet (UV) region at wavelengths less than 200 nm. Here the use of femtosecond laser ablation and its effects on elemental and isotopic fractionation is investigated. The Pb/U system is used to illustrate elemental fractionation and stable Fe isotopes are used to illustrate isotopic fractionation. No elemental fractionation is observed beyond the precision of the multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) measurements. Without a matrix match between standard and sample, elemental fractionation is absent even when using different laser ablation protocols for standardization and samples (spot versus raster). Furthermore, we found that laser ablation-induced isotope ratio drifts, commonly observed during nanosecond laser ablation, are undetectable during ultraviolet femtosecond laser ablation. So far the precision obtained for Fe isotope ratio determinations is 0.1‰ (2 standard deviation) for the 56Fe/54Fe ratio. This is close to that obtainable by solution multiple-collector inductively coupled plasma mass spectrometry. The accuracy of the results appears to be independent of the matrix used for standardization. The resulting smaller particle sizes reduce fractionation processes. Femtosecond laser ablation carries the potential to solve some of the difficulties encountered during the two prior decades since the introduction of laser ablation.  相似文献   

6.
7.
The shockwave propagation and aerosol formation during femtosecond laser ablation (fs-LA) of dielectric materials (Li2B4O7, Y:ZrO2) in ambient air were monitored using shadowgraphy and light scattering. Three independent shockwave fronts were observed originating from (i) the instantaneous compression of ambient gas during the initial stage of fs-LA, (ii) a secondary compression caused by material ejection, and (iii) an air breakdown well above the target surface. In addition, particle size distributions were found to be multimodal implying the co-existence of condensational growth and supplementary particle production pathways such as phase explosion or critical point phase separation (CPPS). As a consequence, fs-LA of Li2B4O7 resulted in the formation of primary aggregates reaching diameters of > 10 μm. In contrast, aggregates formed during fs-LA of Y:ZrO2 covered a size range < 1 μm. Our data, furthermore, indicate the existence of a breakdown channel in the ambient atmosphere being capable to carry plasmatic, i.e. non-condensed matter beyond the primary shockwave barrier which may occasionally causes a spatial separation of material released. Assuming the Taylor-Sedov model of explosion to be valid the over-all energy dissipated in acoustic transients was found to exceed values of 50%.  相似文献   

8.
Stable metal (e.g. Li, Mg, Ca, Fe, Cu, Zn, and Mo) and metalloid (B, Si, Ge) isotope ratio systems have emerged as geochemical tracers to fingerprint distinct physicochemical reactions. These systems are relevant to many Earth Science questions. The benefit of in situ microscale analysis using laser ablation (LA) over bulk sample analysis is to use the spatial context of different phases in the solid sample to disclose the processes that govern their chemical and isotopic compositions. However, there is a lack of in situ analytical routines to obtain a samples' stable isotope ratio together with its chemical composition. Here, we evaluate two novel analytical routines for the simultaneous determination of the chemical and Si stable isotope composition (δ30Si) on the micrometre scale in geological samples. In both routines, multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) is combined with femtosecond-LA, where stable isotope ratios are corrected for mass bias using standard-sample-bracketing with matrix-independent calibration. The first method is based on laser ablation split stream (LASS), where the laser aerosol is split and introduced simultaneously into both the MC-ICP-MS and a quadrupole ICP-MS. The second method is based on optical emission spectroscopy using direct observation of the MC-ICP-MS plasma (LA-MC-ICP-MS|OES). Both methods are evaluated using international geological reference materials. Accurate and precise Si isotope ratios were obtained with an uncertainty typically better than 0.23‰, 2SD, δ30Si. With both methods major element concentrations (e.g., Na, Al, Si, Mg, Ca) can be simultaneously determined. However, LASS-ICP-MS is superior over LA-MC-ICP-MS|OES, which is limited by its lower sensitivity. Moreover, LASS-ICP-MS offers trace element analysis down to the μg g−1-range for more than 28 elements due to lower limits of detection, and with typical uncertainties better than 15%. For in situ simultaneous stable isotope measurement and chemical composition analysis LASS-ICP-MS in combination with MC-ICP-MS is the method of choice.  相似文献   

9.
Specific expansion phenomena of aerosols generated by near infrared femtosecond laser ablation (NIR-fs-LA) of brass under helium and argon atmosphere were studied. For this purpose, particles were visualized by light scattering using a pulsed laser source. Aerosols were found to be captured in symmetric vortices when striking a solid boundary during their kinetic stage of expansion. Furthermore, high-repetitive LA resulted in the formation of a complex, macroscopic flow pattern driven by a pressure gradient locally built up. Our data indicate that aerosols released under those conditions experience only minor losses of around 1% if they get in contact with the inner walls of ablation cells operated at atmospheric pressures.  相似文献   

10.
In this study, we used the colloid probe atomic force microscopy (AFM) technique to investigate the adhesion force between a living cell and a silica colloid particle in a Leibovitz's L-15 medium (L-15). The L-15 liquid maintained the pharmaceutical conditions necessary to keep the cells alive in the outside environment during the AFM experiment. The force curves in such a system showed a steric repulsion in the compression force curve, due to the compression of the cells by the colloid probe, and an adhesion force in the decompression force curve, due to binding events between the cell and the probe. We also investigated for the first time how the position on the cell surface, the strength of the pushing force, and the residence time of the probe at the cell surface individually affected the adhesion force between a living cell and a 6.84 μm diameter silica colloid particle in L-15. The position of measuring the force on the cell surface was seen not to affect the value of the maximum adhesion force. The loading force was also seen not to notably affect the value of the maximum adhesion force, if it was small enough not to pierce and damage the cell. The residence time of the probe at the cell surface, however, clearly affected the adhesion force, where a longer residence time gave a larger maximum force. From these results, we could conclude that the AFM force measurements should be made using a loading force small enough not to damage the cell and a fixed residence time, when comparing results of different systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号