首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Current Applied Physics》2010,10(2):419-421
To improve the breakdown voltage, we propose a SOI-based LDMOSFET with a trench structure in the drift region. Due to the trench oxide and underneath boron implanted layer, the surface electric field in the drift region effectively reduced. These effects resulted in the increment of breakdown voltage for the trenched LDMOS more than 100 V compared with the conventional device. However, the specific on-resistance, which has a trade-off relationship, is slightly increased. In addition to the trench oxide on the device performance, we also investigated the influence of n− drift to n+ drain junction spacing on the off-state breakdown voltage. The measured breakdown voltages were varied more than 50 V with different n− to n+ design spaces and achieved a maximum value at LDA = 2.0 μm. Moreover, the influence of field plate on the breakdown voltage of trench LDMOSFET was investigated. It is found that the optimum drain field plate over the field oxide is 8 μm.  相似文献   

2.
A new device structure for high breakdown voltage and low specific on resistance of the LDMOS device is proposed in this paper. The main idea in the proposed structure is using omega shape channel. The benefits of omega shape channel could be determined by extending depletion region in the drift region that causes low specific on resistance. Also, uniform horizontal electric field would be achieved that results in high breakdown voltage. The proposed structure is called Omega-shape Channel LDMOS (OCH-LDMOS). The simulation with two dimensional ATLAS simulator shows that the breakdown voltage increases to 712 V from 243 V of the conventional LDMOS at 12 µm drift length. Also, effective values of doping, length, and depth of Ω-shape channel are investigated.  相似文献   

3.
An i-InGaP/n-InxGa1  xAs/i- GaAs step-graded doped-channel field-effect transistor (SGDCFET) has been fabricated and studied. Due to the existence of a V-shaped energy band formed by the step-graded structure, a large output current density, a large gate voltage swing with high average transconductance, and a high breakdown voltage can be expected. In this study, first, a theoretical model and a transfer matrix technique are employed to analyze the energy states and wavefunctions in the step-graded quantum wells. Experimentally, for a 1  ×  80 μm2gate dimension device, a maximum drain saturation current density of 830 mAmm  1, a maximum transconductance of 188mSmm  1 , a high gate breakdown voltage of 34 V, and a large gate voltage swing 3.3 V with transconductance larger than 150 mSmm  1are achieved. These performances show that the device studied has a good potentiality for high-speed, high-power, and large input signal circuit applications.  相似文献   

4.
Cold-field emission properties of carbon cone nanotips (CCnTs) have been studied in situ in the transmission electron microscope (TEM). The current as a function of voltage, i(V), was measured and analyzed using the Fowler–Nordheim (F–N) equation. Off-axis electron holography was employed to map the electric field around the tip at the nanometer scale, and combined with finite element modeling, a quantitative value of the electric field has been obtained. For a tip-anode separation distance of 680 nm (measured with TEM) and a field emission onset voltage of 80 V, the local electric field was 2.55 V/nm. With this knowledge together with recorded i(V) curves, a work function of 4.8 ± 0.3 eV for the CCnT was extracted using the F–N equation.  相似文献   

5.
The effects of carbon nano-tubes (CNTs) on the crystal structure and superconducting properties of YBa2Cu3O7?δ (Y-123) compound were studied. Samples were synthesized using standard solid-state reaction technique by adding CNT up to 1 wt% and X-ray diffraction data confirm the single phase orthorhombic structure for all the samples. Current–voltage measurements in magnetic fields up to 9 T were used to study the pinning energy UJ and critical current density Jc as a function of magnetic field at fixed temperature. We find that while Tc does not change much with the CNT doping (91–92 K), both UJ and Jc increase systematically up to 0.7 wt% CNT doping in a broad magnetic field ranges between 0.1 and 9 T and Jc in the 0.7 wt% CNT doped sample is at least 10 times larger than that of the pure Y-123. The scanning electron microscope image shows that CNTs are forming an electrical-network between grains. These observations suggest that the CNT addition to the Y-123-compounds improve the electrical connection between superconducting grains to result in the Jc increase.  相似文献   

6.
《Current Applied Physics》2015,15(3):279-284
A non-volatile flash memory device based on metal oxide semiconductor (MOS) capacitor structure has been fabricated using platinum nano-crystals(Pt–NCs) as storage units embedded in HfAlOx high-k tunneling layers. Its memory characteristics and tunneling mechanism are characterized by capacitance–voltage(C–V) and flat-band voltage-time(ΔVFB-T) measurements. A 6.5 V flat-band voltage (memory window) corresponding to the stored charge density of 2.29 × 1013 cm−2 and about 88% stored electron reserved after apply ±8 V program or erase voltage for 105 s at high frequency of 1 MHz was demonstrated. Investigation of leakage current–voltage(J–V) indicated that defects-enhanced Pool-Frenkel tunneling plays an important role in the tunneling mechanism for the storage charges. Hence, the Pt–NCs and HfAlOx based MOS structure has a promising application in non-volatile flash memory devices.  相似文献   

7.
An InGaAs–based photodetector with different periods of inserting strain–compensated In0.66Ga0.34As/InAs superlattice (SL) electron barrier in the In0.83Ga0.17As absorption layer has been investigated. The band diagram, electron concentration and electric field intensity of the structure were analyzed with numerical simulation. It was found that the period of SL has a remarkable influence on the properties of the photodetectors. With the decrease of the period of In0.66Ga0.34As/InAs SL, the dark current density is suppressed significantly, which is reduced to 2.46 × 10−3 A/cm2 at 300 K and a reverse bias voltage of 1 V when the period is 2.5 nm.  相似文献   

8.
We have investigated the electrical and optical properties of an nBn based Type-II InAs/GaSb strained layer superlattice detector as a function of absorber region background carrier concentration. Temperature-dependent dark current, responsivity and detectivity were measured. At T = 77 K and Vb = 0.1 V, with two orders of magnitude change in doping concentration, the dark current density increased from ~0.3 mA/cm2 to ~0.3 A/cm2. We attribute this to a depletion region that exists at the AlGaSb barrier and the SLS absorber interface. The device with non-intentionally doped absorption region demonstrated the lowest dark current density (0.3 mA/cm2 at 0.1 V) with a specific detectivity D1 at zero bias equal to 1.2 × 1011 Jones at 77 K. The D1 value decreased to 6 × 1010 cm Hz1/2/W at 150 K. This temperature dependence is significantly different from conventional PIN diodes, in which the D1 decreases by over two orders of magnitude from 77 K to 150 K, making nBn devices a promising alternative for higher operating temperatures.  相似文献   

9.
石艳梅  刘继芝  姚素英  丁燕红  张卫华  代红丽 《物理学报》2014,63(23):237305-237305
为了提高小尺寸绝缘体上硅(SOI)器件的击穿电压,同时降低器件比导通电阻,提出了一种具有L型源极场板的双槽SOI高压器件新结构.该结构具有如下特征:首先,采用了槽栅结构,使电流纵向传导面积加宽,降低了器件的比导通电阻;其次,在漂移区引入了Si O2槽型介质层,该介质层的高电场使器件的击穿电压显著提高;第三,在槽型介质层中引入了L型源极场板,该场板调制了漂移区电场,使优化漂移区掺杂浓度大幅增加,降低了器件的比导通电阻.二维数值仿真结果表明:与传统SOI结构相比,在相同器件尺寸时,新结构的击穿电压提高了151%,比导通电阻降低了20%;在相同击穿电压时,比导通电阻降低了80%.与相同器件尺寸的双槽SOI结构相比,新结构保持了双槽SOI结构的高击穿电压特性,同时,比导通电阻降低了26%.  相似文献   

10.
We report a systematic study of the layered lithium nitridocuprates Li3 ? xCuxN with 0.1  x  0.39. The structural data obtained from experimental XRD patterns, Rietveld refinements and unit cell parameters calculation vs x, indicate that copper (I) substitute interlayer lithium ions in the parent nitride Li3N to form the Li3 ? xCuxN compound without any Li vacancy in the Li2N? layer. Electrochemical results report Li insertion into the corresponding layered structures cannot take place in the 1.2/0.02 V voltage range as in the case of lithium into nitridonickelates and nitridocobaltates. However, in the initial charge process of Li3 ? xCuxN at 1.4 V leading to a specific capacity higher than 1000 mA h/g, the oxidation of copper and nitride ions is probably involved inducing a strong structural disordering process. As a consequence a new rechargeable electrochemical system characterized by discharge–charge potential of ≈ 0.3 V/1.2 V appears from the second cycle. Cycling experiments 0.02 V voltage/0.02 V range induce a complete destruction of the layered host lattice and the presence of Cu3N in the charge state suggests a conversion reaction. The capacity recovered in the 1.4/0.02 V range practically stabilizes around 500 mA h/g after 20 cycles.  相似文献   

11.
The reported work has been focused on the improvement of electrical parameters of Schottky diode using vacuum annealing at mild temperature in Ar gas ambient. Nickel Schottky barrier diodes were fabricated on 50 μm epitaxial layer of n-type 4H-SiC (0 0 0 1) substrate. The values of leakage current, Schottky barrier height (?B), ideality factor (η) and density of interface states (NSS) were obtained from experimentally measured current–voltage (IV) and capacitance–voltage (CV) characteristics before and after vacuum annealing treatment. The data revealed that ?B, η and reverse leakage current for the as-processed diodes are 1.25 eV, 1.6 and 1.2 nA (at ?100 V), respectively, while for vacuum annealed diodes these parameters are 1.36 eV, 1.3 and 900 pA (at same reverse voltage). Improved characteristics have been resulted under the influence of vacuum annealing because of lesser number of minority carrier generation due to incessant reduction of number of available discrete energy levels in the bandgap of 4H-SiC substrate and lesser number of interface states density at Ni/4H-SiC (0 0 0 1) interface.  相似文献   

12.
《Current Applied Physics》2010,10(3):813-816
Ag films were deposited on Al-doped ZnO (AZO) films and coated with AZO to fabricate AZO/Ag/AZO multilayer films by DC magnetron sputtering on glass substrates without heating of glass substrates. The best multilayer films have low sheet resistance of 19.8 Ω/Sq and average transmittance values of 61% in visible region. It was found that the highest figure of merit (FTC) is 6.9 × 10−4 Ω−1. For the dye-sensitized solar cell (DSSC) application, the multilayer films were used as transparent conductive electrode (multilayer films/ZnO + Eosin-Y/LiI + I2/Pt/FTO). The best DSSC based on the multilayer films showed that open circuit voltage (Voc) of 0.47 V, short circuit current density (Jsc) of 2.24 mA/cm2, fill factor (FF) of 0.58 and incident photon-to-current conversion efficiency (η) of 0.61%. It was shown that the AZO/Ag/AZO multilayer films have potential for application in DSSC.  相似文献   

13.
The effect of thickness of functional layer on the electrical and electroluminescence (EL) properties of single-layer OLED with ITO/PVK:PBD:TBAPF6/Al structure were investigated where indium tin oxide (ITO) was used as anode, poly(9-vinylcarbazole) (PVK) as polymeric host, 2-(4-biphenylyl)-5-phenyl-1,3,4-oxadiazole (PBD) as electron-transporting molecule, tetrabutylammonium hexafluorophosphate (TBAPF6) as organic salt dopant and aluminium (Al) as cathode. A unique transition phenomenon at high bias voltage in the devices was observed and the transition was reversible. The transition voltage and turn on voltage decreased with the decrease of functional layer thickness. The turn on voltage was approximately 5.5 V and 6.5 V for 55-nm-thick and 95-nm-thick devices, respectively. However, the current efficiency of 95-nm-thick device was higher than the 55-nm-thick device. More interestingly, the Commission Internationale d’Eclairage (C.I.E.) coordinates of EL spectra of 95-nm-thick device at bias voltage ranging from 7 V to 13 V located in the white light region even without any dye doping. The PL and EL spectra were found completely different. PBD electromer was proposed to dominate the EL spectrum, but the contribution from PVK–PBD electroplex cannot be completely ruled out.  相似文献   

14.
We have studied the current–voltage (IV) characteristics of polydiacetylene (PDA) thin films in the temperature region 300–1.7 K. It was found that at electric fields higher than 2 × 104 V/cm, the IV characteristics are strongly super-linear with negative temperature coefficient of starting voltage. Negative gate voltage increases the source-drain current (the effect is more pronounced at low temperature), whereas the magnetic field up to 7 T does not affect it. The results demonstrate that at low temperature the charge transport is mainly supported due to a charge injection and tunneling from the metallic banks, whereas at higher temperatures the activation energy is related to the band gap mismatch between the different polymer chains or granules.  相似文献   

15.
Nanoscale Co3O4 particles were doped into MgB2 tapes with the aim of developing superconducting wires with high-current-carrying capacity. Fe-sheathed MgB2 tapes with a mono-core were prepared using the in situ powder-in-tube (PIT) process with the addition of 0.2–1.0 mol% Co3O4. The critical temperature decreased monotonically with an increasing amount of doped Co3O4 particles for all heat-treatment temperatures from 600 to 900 °C. However, the transport critical current density (Jc) at 4.2 K varied with the heat-treatment temperatures. The Jc values in magnetic fields ranging from 7 to 12 T decreased monotonically with increasing Co3O4 doping level for a heat-treatment temperature of 600 °C. In contrast, some improvements on the Jc values of the Co3O4 doped tapes were observed in the magnetic fields below 10 T for 700 and 800 °C. Furthermore, Jc values in all the fields measured increased as the Co3O4 doping level increase from 0 to 1 mol% for 900 °C. This heat-treatment temperature dependence of the Jc values could be explained in terms of the heat-treatment temperature dependence of the irreversibility field with Co3O4 doping.  相似文献   

16.
The morphological structure of clean and deuterated Er films deposited on W substrates and their removal by field evaporation have been investigated as part of a program directed toward the development of deuterium ion sources for neutron generators. Annealed Er films up to ~ 20 monolayers in thickness deposited on W < 110 > substrates appear pseudomorphic. Thicker annealed films form a hexagonal close-packed < 0001 > orientated over-layer with the Pitsch–Schrader orientation relation. The pseudomorphic and hexagonal close-packed character of the films is retained up to the last atomic layer that forms the film-substrate interface. Deuterated Er films appear polycrystalline. At 77 K in Ar, annealed Er films field evaporate at 2.5 V/Å primarily as Er2 + and deuterated Er films evaporate at ~ 2.4 V/Å primarily as ErDx2 +. Field evaporation of both clean and deuterated Er films shows signs of space charge induced field lowering when film thicknesses exceeding ~ 10 layers were field evaporated using 20 ns duration voltage pulses.  相似文献   

17.
Results of temperature dependent perturbed angular correlation (PAC) measurements in the equiatomic ZrNi alloy have been reported for the first time using 181Hf probe. At room temperature, values of quadrupole frequency and asymmetry parameter for the major component (~80%) are found to be ωQ=26.8(4) Mrad/s, and η=0.413(7). The resulting electric field gradient comes out to be Vzz=2.99 ×1017 V/cm2 and this corresponds to the probe nuclei occupying the regular substitutional Zr sites. In ZrNi system, no magnetic interaction is observed down to 77 K indicating absence of any magnetism in this material. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) studies on an inactive but similarly prepared sample confirm the dominant presence of the orthorhombic ZrNi phase in the sample. A complementary density functional theory (DFT) calculation results in Vzz=−2.35×1017 V/cm2, η=0.46 at the 181Ta probe impurity site and zero magnetic moment on each atomic site, in close agreement with the experimental results. Furthermore, it is found that electric field gradient for the regular component follows a T3/2 temperature dependence between 77 and 353 K, beyond which it varies linearly with temperature.  相似文献   

18.
(Gd,Y)Ba2Cu3Ox tapes have been fabricated by metal organic chemical vapor deposition (MOCVD) with Zr-doping levels of 0–15 mol.% and Ce doping levels of 0–10 mol.% in 0.4 μm thick films. The critical current density (Jc) of Zr-doped samples at 77 K, 1 T applied in the orientation of H 6 c is found to increase with Zr content and shows a maximum at 7.5% Zr doping. The 7.5% Zr-doped sample exhibits a critical current density (Jc) of 0.95 MA/cm2 at H 6 c which is more than 70% higher than the Jc of the undoped sample. The peak in Jc at H 6 c is 83% of that at H 6 ab in the 7.5% Zr-doped sample which is more than twice as that in the undoped sample. Superconducting transition temperature (Tc) values as high as about 89 K have been achieved in samples even with 15% Zr and 10% Ce. Ce-doped samples with and without Ba compensation are found to exhibit substantially different Jc values as well as angular dependence characteristics.  相似文献   

19.
The effect of the dc bias on the compositional ratio, resistivity, and deposition rate for tungsten nitride (WNX) films prepared by rf-dc coupled magnetron sputtering have been investigated in detail. The value of the film compositional ratio (N/W) is significantly decreased from 0.8 to 0.2 with increasing the target dc bias voltage. The increase of the target dc bias voltage from −100 to −500 V results in a dramatical decrease in the resistivity of WNX films. It is shown that the N/W ratio and the resistivity of WNX thin films deposited at the target dc bias voltage of −200 V are about 0.5 and 370 μΩ cm, respectively.  相似文献   

20.
A novel alternated ultrasonic and electric pulse enhanced electrochemical process was developed and used for investigating its effectiveness on the degradation of p-nitrophenol (PNP) in an aqueous solution. The impacts of pulse mode, pH, cell voltage, supporting electrolyte concentration, ultrasonic power and the initial concentration of PNP on the performance of PNP degradation were evaluated. Possible pathway of PNP degradation in this system was proposed based on the intermediates identified by GC–MS. Experimental results showed that 94.1% of PNP could be removed at 2 h in the dual-pulse ultrasound enhanced electrochemical (dual-pulse US-EC) process at mild operating conditions (i.e., pulse mode of electrochemical pulse time (TEC) = 50 ms and ultrasonic pulse time (TUS) = 100 ms, initial pH of 3.0, cell voltage of 10 V, Na2SO4 concentration of 0.05 M, ultrasonic powder of 48.8 W and initial concentration of PNP of 100 mg/L), compared with 89.0%, 58.9%, 2.4% in simultaneous ultrasound enhanced electrochemical (US-EC) process, pulsed electrochemical (EC) process and pulsed ultrasound (US), respectively. Moreover, energy used in the dual-pulse US-EC process was reduced by 50.4% as compared to the US-EC process. The degradation of PNP in the pulsed EC process, US-EC process and dual-pulse process followed pseudo-first-order kinetics. Therefore, the dual-pulse US-EC process was found to be a more effective technique for the degradation of PNP and would have a promising application in wastewater treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号