首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Scanning electrochemical microscopy (SECM) has been applied to investigate counter ion transport through four different proton conducting membranes with poly(styrene sulfonic acid) side chains. These membranes, intended for the polymer electrolyte fuel cell, are based on PVDF and PVDF-co-HFP matrix materials and have been prepared by an irradiation grafting method. SECM is found to be suitable for mapping variations in proton diffusion coefficient and concentration in these inhomogeneous membranes. It was found that the variations in these parameters are most considerable in a membrane with a high degree of grafting. Ionic conductivities measured with impedance spectroscopy were in agreement with calculated values obtained on the basis of the SECM measurements.  相似文献   

2.
Ion transport behaviours through cell membranes are commonly identified in biological systems, which are crucial for sustaining life for organisms. Similarly, ion transport is significant for electrochemical ion storage in rechargeable batteries, which has attracted much attention in recent years. Rapid ion transport can be well achieved by crystal channels engineering, such as creating pores or tailoring interlayer spacing down to the nanometre or even sub-nanometre scale. Furthermore, some functional channels, such as ion selective channels and stimulus-responsive channels, are developed for smart ion storage applications. In this review, the typical ion transport phenomena in the biological systems, including ion channels and pumps, are first introduced, and then ion transport mechanisms in solid and liquid crystals are comprehensively reviewed, particularly for the widely studied porous inorganic/organic hybrid crystals and ultrathin inorganic materials. Subsequently, recent progress on the ion transport properties in electrodes and electrolytes is reviewed for rechargeable batteries. Finally, current challenges in the ion transport behaviours in rechargeable batteries are analysed and some potential research approaches, such as bioinspired ultrafast ion transport structures and membranes, are proposed for future studies. It is expected that this review can give a comprehensive understanding on the ion transport mechanisms within crystals and provide some novel design concepts on promoting electrochemical ion storage capability in rechargeable batteries.  相似文献   

3.
The current–voltage curves, transport numbers of ions, and electrochemical impedance spectra are obtained for pilot samples of heterogeneous bipolar membranes synthesized from cation- and anion-exchange membranes. In the synthesis, the composition of the monopolar layers of membranes was varied or a catalyst was introduced into them. The voltage drop and the frequency spectra at the pilot membranes are close to those for industrial membrane MB-3. The transport numbers of co-ions in the pilot membranes are smaller and those of the hydrogen and hydroxyl ions are larger than in MB-3. The effective water dissociation constants in the pilot membranes, calculated from the impedance spectra, are close to those of MB-3.  相似文献   

4.
《Electroanalysis》2018,30(2):207-219
Biological membranes are essential parts of living systems. They represent an interface between intracellular and extracellular space. Depending on their structure, they often perform very complex functions and play an important role in the transport of both charged and uncharged particles in any organism. Structure of the biological membranes, which play very important role in electrochemical processes inside living organisms, is very complicated and still not precisely defined and explained. Model lipid membranes are used to gain detail information about properties of real biological membranes and about associated electrochemical processes. Electrochemistry, especially electrochemical impedance spectroscopy (EIS), can play a useful role in the characterization of properties of model lipid membranes (planar and supported lipid bilayers, tethered lipid membranes, liposomes, etc.). This review is focused on model biological membranes and the possibilities and limitations of electrochemical methods and namely of EIS in this field.  相似文献   

5.
The milestones formerly achieved in the comprehension of ion transport across biological membranes on the basis of electrochemical concepts and/or instrumentation are briefly summarized. The various types of model membranes presently employed for the investigation of ion transport across biomembranes are reviewed and their requirements for the incorporation and functional investigation of membrane proteins are examined. The potential of model membranes for the elucidation of many problems in molecular membrane biology and for the realization of microarray sensors individually addressable to membrane proteins by electrochemical means is assessed.  相似文献   

6.
With the objective of introducing antifouling characteristics into interpolymer types of cation and anion exchange membranes, the surface of these membranes was coated with a 12-microm-thick urethane acrylate layer and was cured by UV radiation of wavelengths 308 and 172 nm under a complete inert atmosphere. Different urethane acrylate composite ion exchange membranes developed were characterized in NaCl solution by measuring their ion-exchange capacity, volume fraction of water, contact angle with water, membrane conductance, and membrane potential. It was found that the electrochemical transport properties of urethane acrylate composite cation-exchange membranes were increased due to resonance stabilization of the urethane group, which acts as a weak acid and dissociates as a negatively charged urethane ion and a positively charged proton. This contributes toward the net charge density of the membrane matrix responsible for enhanced selectivity and conductivity, while for urethane acrylate composite anion-exchange membranes reduction in net charge density was responsible for reduction in electrochemical transport properties. Counterion transport number, permselectivity, and counterion diffusion coefficient values for these membranes were also estimated. Experiments were also carried out in higher homologs of sodium carboxylate solutions in order to observe the fouling tendencies of these membranes. It was concluded that it is possible to obtain antifouling characteristics of ion-exchange membranes by coating and curing thin hydrophilic layers of urethane acrylate on their surfaces without sacrificing their electrochemical transport properties.  相似文献   

7.
Tethered bilayer lipid membranes (tBLMs) are described based on the self-assembly of a monolayer on template stripped gold of an archea analogue thiolipid, 2,3-di-o-phytanyl-sn-glycerol-1-tetraethylene glycol-d,l-alpha-lipoic acid ester lipid (DPTL), and a newly designed dilution molecule, tetraethylene glycol-d,l-alpha-lipoic acid ester (TEGL). The tBLM is completed by fusion of liposomes made from a mixture of diphytanoylphosphatidyl choline (DPhyPC), cholesterol, and 1,2-diphytanoyl-sn-glycero-3-phosphate (DPhyPG) in a molar ratio of 6:3:1. Melittin and gramicidin are incorporated into these tBLMs as shown by surface plasmon resonance (SPR) and electrochemical impedance spectroscopy (EIS) studies. Ionic conductivity at 0 V vs Ag|AgCl, 3 M KCl, measured by EIS measurements are comparable to the results obtained by other research groups. Admittance plots as a function of potential are discussed on a qualitative basis in terms of the kinetics of ion transport through the channels.  相似文献   

8.
Solid polymeric membranes of poly(vinylbenzyl chloride) (VBC), lightly crosslinked with divinyl benzene, were incompletely reacted such that a fraction of the benzyl chlorines in different membranes was replaced with either dimethyl phosphonate esters (MPE) or triethyl ammonium chloride groups (QA). This work was conducted in an effort to investigate ionic transport through charged and uncharged membranes and to develop fixed site carrier membranes to facilitate the transport of selected metal ions from an aqueous feed stream to a concentrated acid receiving stream. Bulk solution flow does not occur through these membranes. Instead, solute diffusion occurs through the membrane matrix. The effects of hydrogen ion gradient, metal ion identity and charge, reactive site type, acid type, and ionic strength on metal ion transport were investigated. Results are also presented on the effect of membrane orientation and pretreatment (swelling) on metal ion transport. Facilitated transport was investigated through the testing of membranes with varying MPE percent functionalization. The results presented compare the metal ion transport rate to the functionalization of the membranes.  相似文献   

9.
离子液体/凝胶聚合物电解质的制备及其与LiFePO_4的相容性   总被引:1,自引:0,他引:1  
以1-甲基-3-乙基咪唑六氟磷酸盐(EMIPF6)、聚偏氟乙烯-六氟丙烯(P(VDF-HFP))和六氟磷酸锂(LiPF6)为原料,采用溶液浇铸法制备了离子液体/凝胶聚合物电解质(ILGPE).通过循环伏安(CV)、计时电流法、恒流充放电、电化学阻抗法(EIS)研究了该电解质的离子传输特性以及与锂离子电池正极材料LiFePO4的相容性.结果表明,离子液体/凝胶聚合物电解质的室温电导率为1.650×10-3S·cm-1,电化学稳定窗口达到5.0V.在充放电循环过程中,电极表面形成的钝化膜改善了锂离子脱、嵌可逆性和电极/电解质的界面性质.  相似文献   

10.
利用钐掺杂的氧化铈夹层提高燃料电池阳极的活性   总被引:3,自引:0,他引:3  
考察了Ni-钐掺杂的氧化铈(Ni-SDC)复合阳极与La0.9Sr0.1Ga0.8Mg0.2O3(LSGM)电解质中间加入的SDC 中间层对阳极及整个电池性能的影响.结果表明,SDC中间层的加入显著减小了阳极极化过电位,但同时引入了欧姆降,降低了电池的功率输出密度.氢在Ni-SDC电极的氧化主要由两个过程控制,分别对应于交流阻抗谱的两个阻抗半圆,高频环随着SDC中间层的加入显著减小,可能对应于H2在Ni-SDC/SDC/H2三相界的电化学氧化或氧从LSGM向SDC的传输,低频环与SDC中间层无关,可能对应于氢在电极表面的解离吸附及吸附物种的扩散过程.使用Ni-SDC/SDC夹层阳极可以明显地提高电池的稳定性.  相似文献   

11.
聚合物离子交换膜有多种制备方法,其中高分子材料辐射引发接枝功能性单体是一种文献中屡见报道且简单可行的方法.通过在不同聚合物基体上接枝各种类型的单体,可以改变接枝膜的电化学性能、物理化学等性能.丈中详细介绍了不同的高分子基材辐射接枝各类单体制备聚合物离子交换膜的研究现状.  相似文献   

12.
We employed the Devanathan–Stachurski experimental methodology for direct measurement of the rate of lithium transport in metals that can be used as negative electrodes in lithium–ion batteries. The measured Li transport rate in aluminum appears to be in relatively good agreement with previously reported results obtained using standard electrochemical techniques. However, Li transport rate measurements in aluminum membranes of different thicknesses reveal anomalies with regard to the standard diffusion controlled mass transfer model. We attribute this effect to a complex Li transport mechanism in Al membranes upon alloying.  相似文献   

13.
Fouling of ion exchange membranes in an electrodialysis process is highly sensitive to the concentration of a surfactant. To investigate the influence of the fouling on the process performance, an anion exchange membrane was characterized by electrochemical properties as well as physical and chemical properties. The fouling potential was then quantitatively analyzed using the membrane fouling index as a function of the surfactant concentration. It was observed that the fouling mechanism is initiated by the micelle formation. That is, most of SDBS molecules form a fouling layer on the membrane surface at a higher concentration than the critical micelle concentration. Also the SDBS fouling mechanisms caused by the fouling layer were examined by the electrochemical impedance spectroscopy. The equivalent circuits show that the fouling potential of the system was increased by an additional layer, simultaneously increasing the electrical resistance to permeation of ions through the membrane. However, the SDBS fouling on the membrane was a reversible process.  相似文献   

14.
Tethered bilayer lipid membranes are established as well‐suited model membrane systems adaptable to different surfaces, for example, gold and silicon. These solid supported membranes are highly flexible in their tethering and lipid parts and can thus be optimized for functional incorporation of membrane proteins. The excellent sealing properties of the tethered membranes allow incorporated ion‐channel proteins to be investigated. Preparation of ultrasmooth aluminum oxide by sputtering and synthesis of new tethering lipids with phosphonic acid anchor groups enable formation of an electrically sealing membrane on this surface. This process is monitored by electrochemical impedance spectroscopy and by surface plasmon resonance spectroscopy. High sealing performance of the membrane and functional incorporation of the ion carrier valinomycin are demonstrated.  相似文献   

15.
Membranes which allow fast and selective transport of protons and cations are required for a wide range of electrochemical energy conversion and storage devices, such as proton‐exchange membrane (PEM) fuel cells (PEMFCs) and redox flow batteries (RFBs). Herein we report a new approach to designing solution‐processable ion‐selective polymer membranes with both intrinsic microporosity and ion‐conductive functionality. Polymers are synthesized with rigid and contorted backbones, which incorporate hydrophobic fluorinated and hydrophilic sulfonic acid functional groups, to produce membranes with negatively charged subnanometer‐sized confined ionic channels. The ready transport of protons and cations through these membranes, and the high selectivity towards nanometer‐sized redox‐active molecules, enable efficient and stable operation of an aqueous alkaline quinone redox flow battery and a hydrogen PEM fuel cell.  相似文献   

16.
The electrochemical characteristics of one commercial bipolar ion exchange membrane and of two home-made bipolar membranes are investigated over a range of current densities up to 2 kA m−2. Studies are performed using galvano-potentiometry (i/V) and impedance spectrometry methods. The temperature dependence of i/V curves enables the determination of the activation energies related to the overall electrochemical process of H+ and OH production by water dissociation at the membrane junction. The physical analysis of the experimental data is made on the basis of a neutral layer model for the membrane junction. The theoretical treatment leads first to establish a thermodynamic framework insuring the validity of the criteria used in the interpretation of the results in terms of the model. Application of current electrochemical kinetic concepts at steady state involves the idea that, in the presence of an efficient catalyst, a quasi-reversible state of the water dissociation reaction may be achieved at the junction. A theoretical approach is developed for treating the data obtained with transient measurements in absence of co-ion transport. This study reveals the intrinsic roles played in the overall process of respectively: (a) the H+ and OH ion transport; (b) the electrical double layers at the membrane junction boundaries; and (c) the chemical mechanism of water dissociation.  相似文献   

17.
随着锂离子电池在动力和规模化储能等新能源领域应用的不断拓展,具有特殊功能且满足特定使用需求隔膜的设计准则、制备/改性方法及表征技术亟需系统深入研究。针对锂离子电池高性能和高安全性的要求,研究人员已通过结构设计和表面化学改性等策略优化了隔膜的本征特性,并通过系列表征技术探讨了隔膜的功能化改性对锂离子电池电化学性能的影响。基于以上背景,本文从离子传输、枝晶形核与生长、及安全性能三个方面详细探讨了隔膜对电池性能影响的关键因素及其改性方法,并系统总结了隔膜结构、物化特性、力学性能、热学性能以及电化学性能的表征技术,以期为功能隔膜的合理设计,从而优化锂离子电池性能提供理论和实践指导。同时,本文对隔膜未来的进一步研究和发展提出了展望。  相似文献   

18.
Thermogalvanic cells(also known as thermo-electrochemical cells) that convert waste heat energy to electricity are a new type of energy conversion device. However, the electron transfer kinetics and mass transfer of redox couples have not been thoroughly studied. Here, the ion reaction and charge transport in thermogalvanic cells are investigated by electrochemical impedance analysis. We first propose the detailed impedance model followed experimental verification on three types of electrode materials. Parameters including kinetic rate constants and ion diffusion coefficients for the electrodes are obtained by fitting the impedance data. Our study shows explicitly that impedance analysis can provide useful information on selecting suitable electrode materials for thermogalvanic cells.  相似文献   

19.
This paper describes a novel approach for the surface modification of a cation-exchange membrane, bearing sulfonate groups, by a cationic layer. The modification procedure involved the chlorosulfonation of the sulfonate groups of the base membrane with thionyl chloride, followed by a reaction with a diamine to yield a sulfonamide bond and a terminal amine. The latter could be quaternized by reaction with methyl iodide or protonated by soaking in acidic media. The membranes were characterized in detail by attenuated total reflectance Fourier transform infrared and X-ray photoelectron spectroscopies as well as elemental analysis to confirm that the above reactions occurred. The selectivity of these membranes toward the electrochemically assisted transport of protons versus Zn2+ metallic cations was determined during an electrodialysis in a two-compartment electrochemical cell. The data indicate a significant decrease of the transport of the metallic cations following modification of the membrane with the cationic layer. The later allows for the transport of protons from the catholyte to the anolyte compartment with much improved selectivity since the divalent cations are excluded from the membrane due to the electrostatic barrier of the cationic layer.  相似文献   

20.
Structural modifications promoted by the nature of the plasticizer that affect metal ion migration in polymer inclusion membranes (PIMs) were evaluated using transport data, transmission infrared mapping microspectroscopy (TIMM) and electrochemical impedance spectroscopy (EIS). An analysis of the effects of different plasticizers on indium(III) transport across cellulose triacetate membranes with bis(2,4,4-trimethylpentyl)phosphinic acid (CYANEX 272) as carrier revealed differences in transport profiles that can be explained on the basis of the nature of plasticizer used. While a transport profile of the type carrier-diffusion was observed for tris(2-ethylhexyl)phosphate (TEHP), a transport profile of the type chained-carrier with reduced mobility was suggested by the presence of a percolation threshold for PIMs with tris(2-butoxyethyl)phosphate (TBEP), 2-nitrophenyloctylether (NPOE) and without plasticizer under the experimental conditions used in this work. Accordingly, diffusional equations and percolation theory were used to model permeation and to gain insight into the transport processes occurring in these systems. A correlation between the structural conformation of the PIMs and the transport profiles was successfully achieved using the aforementioned characterization techniques and theoretical frames. Values of the percolation parameters were rationalized considering the distribution of the membrane components observed by TIMM and PIM resistances evaluated by EIS. Membrane behavior for metal extraction was characterized by the determination of the equilibrium constants via solid–liquid extraction experiments. EIS measurements allowed correlating the equilibrium constants with membrane resistances as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号