首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ni–Zn ferrite powders were successfully synthesized by microwave-induced combustion process. The process takes only a few minutes to obtain calcined Ni–Zn ferrite powders. The resultant powders were investigated by XRD, SEM, VSM, TG/DTA and surface area measurements. The as-received product shows the formation of cubic ferrite with saturation magnetization (Ms)≈23 emu/g, whereas upon annealing at 850°C for 4 h, the saturation magnetization (Ms) increased to ≈52 emu/g.  相似文献   

2.
The paper presents the synthesis and catalytic activity of CuFe2O4 nanoparticles. The CuFe2O4 nanoparticles have been prepared by sonochemical route under low power ultrasonic irradiation (UI) and using silent stirring at room temperature only (ST) along with co-precipitation method, without using any additive/capping agent. The synthesized magnetic nanoparticles were successfully used and compared for the synthesis of 4H-chromene-3-carbonitrile derivatives. The CuFe2O4 nanoparticles obtained by sonochemical route exhibit higher catalytic activity because of small size (0.5–5 nm), high surface area (214.55 m2/g), high thermal stability up to 700 °C, recyclability and reusability due to its magnetic characteristics than CuFe2O4 nanoparticles obtained by room temperature silent stirring. The synthesized CuFe2O4 nanoparticles were characterized by FT-IR, SEM–EDX, HR-TEM, XRD, TGA/DTA/DTG, BET, VSM techniques. The present method is of great interest due to its salient features such as environmentally compatible, efficient, short reaction time, chemoselectivity, high yield, cheap, moisture insensitive, green and recyclable catalyst which make it sustainable protocol.  相似文献   

3.
Magnetic iron oxide nanoparticles were successfully prepared by a novel reverse precipitation method with the irradiation of ultrasound. TEM, XRD and SQUID analyses showed that the formed particles were magnetite (Fe3O4) with about 10 nm in their diameter. The magnetite nanoparticles exhibited superparamagnetism above 200 K, and the saturation magnetization was 32.8 emu/g at 300 K. The sizes and size distributions could be controlled by the feeding conditions of FeSO4 · 7H2O aqueous solution, and slower feeding rate and lower concentration lead to smaller and more uniform magnetite nanoparticles. The mechanisms of sonochemical oxidation were also discussed. The analyses of sonochemically produced oxidants in the presence of various gases suggested that besides sonochemically formed hydrogen peroxide, nitrite and nitrate ions contributed to Fe(II) ion oxidation.  相似文献   

4.
Strontium hexaferrite nanoparticles are prepared by the chemical sol–gel route. Specific saturation magnetization σs and coercive field strength Hc are determined depending on the heat treatment of the gel and iron/strontium ratio in the starting solution. These ultrafine powders with single-domain behavior have specific saturation magnetization σs=74 emu/g and coercive field strength Hc=6.4 kOe. Experimental results show that it is necessary to preheat the gel between 400 and 500°C for several hours . It can prevent the formation of intermediate γ-Fe2O3 and help to obtain ultrafine strontium ferrite single phase with narrow size distribution at a low annealing temperature. Additionally, the magnetic properties of sol–gel derived strontium ferrite with iron substituted by Zn2+, Ti4+ and Ir4+ are discussed. For an amount of substitution 0<x⩽0.6, the (Zn, Ti)x substituted strontium ferrite shows higher values of both coercive field strength and saturation magnetization than the (Zn, Ir)x substituted phase.  相似文献   

5.
A metals–citrate–silica gel was prepared from metallic salts, citric acid and tetraethylorthosilicate by sol–gel method (citrate precursor technique) and it was further used to prepare magnetic nanocomposites. The gel was dried at 100 °C and then calcined at temperatures between 600 and 1000 °C to obtain powder samples. The nanocomposites were characterized by XRD, IR, VSM and TEM techniques. The diffraction patterns show the formation of a single magnetic phase identified as CoFe2O4. Magnetic nanoparticles with average size less than 50 nm were obtained which are well dispersed in the silica matrix. The combination of different metals concentrations and calcining temperatures allowed obtaining samples with magnetization ranging from 3.6 to 25.3 emu/g.  相似文献   

6.
Magnesium ferrite, MgFe2O4 nanoparticles with high saturation magnetization were successfully synthesized using ultrasonic wave-assisted ball milling. In this study, the raw materials were 4MgCO3·Mg(OH)2·5H2O and Fe2O3 powders and the grinding media was stainless steel ball. The average particle diameter of the product MgFe2O4 powders was 20 nm and the saturation magnetization of them reached 54.8 emu/g. The different results of aqueous solution ball milling with and without ultrasonic wave revealed that it was the coupling effect of ultrasonic wave and mechanical force that played an important role during the synthesis of MgFe2O4. In addition, the effect of the frequency of the ultrasonic wave on the ball milling process was investigated.  相似文献   

7.
Magnetic FeCo nanoparticles with high saturation magnetization (Ms = 148 emu/g) at 15 kOe were prepared by a coprecipitation route. The value of Ms for FeCo nanoparticles depends on the ratio of Fe to Co components. The size of the nanoparticles was confirmed by transmission electron microscopy (TEM) images, and morphology of the nanoparticles was obtained by field emission scanning electron microscopy (FE-SEM) images. The crystal structure of the nanoparticles dependent on annealing was characterized by X-ray diffraction data. The magnetic properties were characterized by saturation magnetization from a hysteresis loop by VSM.  相似文献   

8.
A novel synthesis was developed for enhanced luminescence in sesquioxide phosphors containing Eu3+ activator. It consisted of two annealing steps: reduction under vacuum with gaseous H2 at 10 Torr and 1300 °C and re-oxidation at 300–1500 °C in air. The integrated luminescence intensity of the monoclinic Eu2O3 phosphor was enhanced ca. 21 times by this method compared with conventional processing. The photoluminescence (PL) intensity was maximized at re-oxidation temperatures of 500–1100 °C. The PL characteristics of monoclinic Eu2O3 and Gd2O3:0.06Eu samples were compared with a commercial cubic Y2O3:Eu phosphor. The evolution of physical characteristics during the two-step annealing was studied by Raman spectroscopy, XPS, XRD, PL decay analysis, and SEM. PL decay lifetime increased proportionally to the PL intensity over the range 0.5–100 μs. Additional vibrational modes appeared at 490, 497, and 512 cm?1 after the two-step annealing. The increase in PL intensity was ascribed to the formation of excess oxygen vacancies and their redistribution during annealing. Resonance crossovers between the charge transfer state and the emitting 5DJ states are discussed in relation to reported luminescence saturation mechanisms for oxysulfides Ln2O2S:Eu3+ (Ln=Y, La).  相似文献   

9.
We report on the structural, magnetic, and magnetotransport characteristics of Cr-doped indium tin oxide (ITO) films grown on SiO2/Si substrates by pulsed laser deposition. Structural analysis clearly indicates that homogeneous films of bixbyite structure are grown without any detectable formation of secondary phases up to 20 mol% Cr doping. The carrier concentration is found to decrease with Cr ion addition, displaying a change in the conduction type from n-type to p-type around 15 mol% Cr doping. Room temperature ferromagnetism is observed, with saturation magnetization of ∼0.7 emu/cm3, remnant magnetization of ∼0.2 emu/cm3 and coercive field of ∼30 Oe for 5 mol% Cr-doped ITO. Magnetotransport measurements reveal the unique feature of diluted magnetic semiconductors, in particular, an anomalous Hall effect governed by electron doping, which indicates the intrinsic nature of ferromagnetism in Cr-doped ITO. These results suggest that Cr-doped ITO could be promising for semiconductor spin electronics devices.  相似文献   

10.
Mg-doped SnS2 nanoflowers were synthesized by hydrothermal method. The XRD and absorption spectra analyses reveal that the incorporated Mg atoms substitute for Sn atoms in SnS2 lattice and red-shift the band-gap at low doping concentration (≤4 at%). With further doping, a transformation of Mg atoms from substitutional sites to interstitial sites occurs. The ferromagnetism of SnS2 nanoflowers is enhanced non-monotonously with Mg doping and the largest saturation magnetization of 2.11×10−3 emu/g appears in 4 at% Mg-doped SnS2. The holes created by Mg substituted incorporation may be the origin of the ferromagnetism. On the other hand, interstitial Mg atoms play a negative role in enhancing the ferromagnetism due to the holes compensation effect.  相似文献   

11.
Terbium activated Al2O3 phosphors were synthesized by combustion technique using hydrazine as a reductive non-carbonaceous fuel. X-ray diffraction (XRD) patterns of the samples were recorded to confirm the formation of the sample. Scanning electron microscope (SEM) images were taken to study the surface morphology of the sample. The photoluminescence (PL), thermoluminescence (TL) and mechanoluminescence (ML) properties of the γ-ray irradiated samples were studied. ML was excited impulsively by dropping a piston on the sample. In ML glow curves one peak with a shoulder was observed. ML intensity increases with activator concentration. Optimum ML was observed for the sample having 0.5 mol% of Tb ions. In the TL glow curve two distinct peaks, one around 222 °C and another around 280 °C, were observed for the samples having 0.5 mol% of activator concentration. In the PL spectra the 5D47F5 line at 544 nm in the green region is observed, which is the strongest in Al2O3 system. It is suggested that de-trapping of trapped charge carriers followed by recombination is responsible for ML and TL in this system.  相似文献   

12.
《Solid State Ionics》2006,177(17-18):1483-1488
LiMn2O4 and LiM0.05Mn1.95O4 (M = Ni, Fe and Ti) were synthesized by using solid-state reactions and their surface stoichiometries were confirmed by XPS data. The crystal and electronic structures were investigated by using X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). XRD data suggested that LiM0.05Mn1.95O4 possesses nearly no any variations in lattice parameters compared with LiMn2O4 for slight substitution of Ni, Fe and Ti; the substituted Ni, Fe and Ti ions were located on the 16d octahedral sites in the spinel crystal lattice. The XPS results suggested that Fe and Ti ions were at + 3 and + 4 oxidation states, respectively; while Ni ions are mixed with + 2 and + 3 oxidation states. The normal oxidation state of Mn ions in the above four materials is almost the same and calculated as + 3.55 according to the splitting energies of Mn3s states.  相似文献   

13.
This study synthesized Fe3O4 nanoparticles of 30–40 nm by a sonochemical method, and these particles were uniformly dispersed on the reduced graphene oxide sheets (Fe3O4/RGO). The superparamagnetic property of Fe3O4/RGO was evidenced from a saturated magnetization of 30 emu/g tested by a sample-vibrating magnetometer. Based on the testing results, we proposed a mechanism of ultrasonic waves to explain the formation and dispersion of Fe3O4 nanoparticles on RGO. A biosensor was fabricated by modifying a glassy carbon electrode with the combination of Fe3O4/RGO and hemoglobin. The biosensor showed an excellent electrocatalytic reduction toward H2O2 at a wide, linear range from 4 × 10?6 to 1 × 10?3 M (R2 = 0.994) as examined by amperometry, and with a detection limit of 2 × 10?6 M. The high performance of H2O2 detection is attributed to the synergistic effect of the combination of Fe3O4 nanoparticles and RGO, promoting the electron transfer between the peroxide and electrode surface.  相似文献   

14.
Cobalt (Co) nanocapsules coated with boron nitride (BN) layers were synthesized by annealing of ammine complex. KBH4 and [Co(NH3)6]Cl3 were used as starting materials, and annealed these powders at 500–1000 °C with flowing nitrogen gas. Formation of fcc-Co nanocapsules coated with BN layers was observed from X-ray diffraction patterns and high-resolution electron microscopy. Particle size of fcc-Co prepared at 1000 °C with flowing 100 sccm N2 gas was approximately 40 nm, and the values of saturation magnetization and coercivity were 74.5 emu/g and 88 Oe, respectively. Good oxidation- and wear-resistances were obtained by encapsulating Co nanoparticles with BN layers.  相似文献   

15.
The influences of O2 partial pressure on saturation magnetization, coercivity and effective permeability of the as-deposited Fe–Sm–O thin films, which were fabricated by RF magnetron reactive sputtering method, were investigated. The nanocrystalline Fe83.4Sm3.4O13.2 thin film fabricated at O2 partial pressure of 5% exhibited the best magnetic softness with a saturation magnetization of 1.43 MA/m, coercivity of 65.2 A/m and effective permeability of about 2600 in the frequency range from 0.5 to 100 MHz. The electrical resistivity of Fe83.4Sm3.4O13.2 was 130 μΩ cm. The microstructures and electrical resistivity were investigated in this work.  相似文献   

16.
Carbon nanotubes (CNTs)-based magnetic nanocomposites can find numerous applications in nanotechnology, integrated functional system, and in medicine owing to their great potentialities. Herein, densely distributed magnetic Fe3O4 nanoparticles were successfully attached onto the convex surfaces of carbon nanotubes (CNTs) by an in situ polyol-medium solvothermal method via non-covalent functionalization of CNTs with cationic surfactant, cetyltrimethylammonium bromide (CTAB), and anionic polyelectrolyte, poly(sodium 4-styrenesulfonate) (PSS), through the polymer-wrapping technique, in which the negatively charged PSS-grafted CNTs can be used as primer for efficiently adsorption of positively metal ions on the basis of electrostatic attraction. X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) analysis have been used to study the formation of Fe3O4/CNTs. The Fe3O4/CNTs nanocomposites were proved to be superparamagnetic with saturation magnetization of 43.5 emu g?1. A mechanism scheme was proposed to illustrate the formation process of the magnetic nanocomposites.  相似文献   

17.
《Current Applied Physics》2010,10(1):333-336
Observation of room temperature ferromagnetism in Fe doped In2O3 samples (In1−xFex)2O3 (0  x  0.07) prepared by co-precipitation technique is reported. Lattice parameter obtained from powder X software shows distinct shrinkage of the lattice constant indicating an actual incorporation of Fe ions into the In2O3 lattice. X-ray diffraction data measurements show that the entire sample exhibits single phase polycrystalline behavior. SEM micrographs showed the prepared powder was in the range 25–36 nm. SEM EDS mapping showed the presence of Fe and In ions in the Fe doped In2O3 sample. The highest remanence magnetization moment (6.624 × 10−4 emu/g) is reached in the sample with x = 0.03.  相似文献   

18.
CuFe2O4 particles were successfully engineered by a facile sol-gel method. The synthesized products were characterized physically by X-ray diffraction (XRD), scanning electron microscopy (SEM). Besides, the effects of the sintering temperature and the molar ration of citric acid/the total metal cations (CA/MC) on their infrared radiant properties were investigated at the wavelength of 3–5 μm. The highest infrared emission value ca. 0.911 was obtained when the test temperature was conducted at 800 °C, indicating its potential application in infrared heating, infrared coating and drying fields.  相似文献   

19.
Magnetic–fluorescent nanocomposites (NCs) with 10 wt% of α-Fe2O3 in ZnO have been prepared by the high energy ball-milling. The crystallite sizes of α-Fe2O3 and ZnO in the NCs are found to vary from 65 nm to 20 nm and 47 nm to 15 nm respectively as milling time is increased from 2 to 30 h. XRD analysis confirms presence of α-Fe2O3 and ZnO in pure form in all the NCs. UV–vis study of the NCs shows a continuous blue-shift of the absorption peak and a steady increase of band gap of ZnO with increasing milling duration that are assigned to decreasing particle size of ZnO in the NCs. Photoluminescence (PL) spectra of the NCs reveal three weak emission bands in the visible region at 421, 445 and 485 nm along with the strong near band edge emission at 391 nm. These weak emission bands are attributed to different defect – related energy levels e.g. Zn-vacancy, Zn interstitial and oxygen vacancy. Dc and ac magnetization measurements show presence of weakly interacting superparamagnetic (SPM) α-Fe2O3 particles in the NCs. 57Fe-Mössbauer study confirms presence of SPM hematite in the sample milled for 30 h. Positron annihilation lifetime measurements indicate presence of cation vacancies in ZnO nanostructures confirming results of PL studies.  相似文献   

20.
V.B. Pawade  S.J. Dhoble 《Optik》2012,123(20):1879-1883
Here we reported photoluminescence properties of Eu2+ activated in novel and existing MgXAl10O17 (X = Sr, Ca) phosphor which has been prepared by combustion synthesis at 550 °C under UV and near UV excitation wavelength. The PL emission properties of MgSrAl10O17:Eu2+ were monitored at 254 nm and 354 nm respectively keeping emission wavelength at 469 nm. Whereas novel MgCaAl10O17:Eu2+ exhibit emission band at 452 nm keeping excitation at 378 nm. These blue emission corresponds to 4f65d1  4f7 transition of Eu2+ ions. Further phosphor was analyzed by XRD for the confirmation of desired phase and purity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号