首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 488 毫秒
1.
R. Ben Said  B. Louati  K. Guidara 《Ionics》2014,20(5):703-711
The Na3.6Ni2.2(P2O7)2 compound was obtained by the conventional solid-state reaction. The sample was characterized by X-ray powder diffraction and vibrational and impedance spectroscopy. The AC electrical conductivity and the dielectric relaxation properties of this compound have been investigated by means of impedance spectroscopy measurements over a wide range of frequencies and temperatures, 209 kHz–1 MHz and 564–729 K, respectively. Dielectric data were analyzed using complex electrical modulus M* at various temperatures. The peak positions ω m of M″ spectra shift toward higher frequencies with increase in temperature. The AC conductivity data fulfill the power law. Application of the correlated barrier hopping model revealed that the ionic conduction takes place by single-polaron and bipolaron hopping processes.  相似文献   

2.
A. Oueslati 《Ionics》2017,23(4):857-867
A lithium yttrium diphosphate LiYP2O7 was prepared by a solid-state reaction method. Rietveld refinement of the X-ray diffraction pattern suggests the formation of the single phase desired compound with monoclinic structure at room temperature. The infrared and Raman spectrum of this compound was interpreted on the basis of P2O7 4? vibrations. The AC conductivity was measured in the frequency range from 100 to 106 Hz and temperatures between 473 and 673 K using impedance spectroscopy technique. The obtained results were analyzed by fitting the experimental data to the equivalent circuit model. The Cole–Cole diagram determined complex impedance for different temperatures. The angular frequency dependence of the AC conductivity is found to obey Jonscher’s relation. The temperature dependence of σ AC could be described in terms of Arrhenius relation with two activation energies, 0.87 eV in region I and 1.36 eV in region II. The study of temperature variation of the exponent(s) reveals two conduction models: the AC conduction dependence upon temperature is governed by the correlated barrier hopping (CBH) model in region I (T < 540 K) and non-overlapping small polaron tunneling (NSPT) model in region II (T > 540 K). The near value of activation energies obtained from the equivalent circuit and DC conductivity confirms that the transport is through ion hopping mechanism dominated by the motion of the Li+ ion in the structure of the investigated material.  相似文献   

3.
The ceramic oxide Na2Pb2Gd2W2Ti4Ta4O30 (NPGWT) was synthesized by the solid solution route. The formation of compound was checked by using X-ray diffraction and scanning electron microscope study. It is observed from both the studies that the material is a single phase and highly dense. The preliminary temperature variation of the dielectric study reveals ferroelectric to paraelectric phase transition much above the room temperature. The polarization study of the material further confirms the presence of ferroelectricity in the studied compound. The transport property of the material was carried out by using the impedance spectroscopy technique. From both impedance and modulus analysis, it is confirmed that conduction mechanism in the material is due to the hopping motion of charge carrier. To strengthen the hopping motion of charge carrier in the material frequency dependence, ac conductivity is carried out.  相似文献   

4.
S. Nasri  M. Megdiche  K. Guidara  M. Gargouri 《Ionics》2013,19(12):1921-1931
The KFeP2O7 compound was prepared by the conventional solid-state reaction. The sample was characterized by X-ray powder diffraction. The AC electrical conductivity and the dielectric relaxation properties of this compound have been investigated by means of impedance spectroscopy measurements over a wide range of frequencies and temperatures, 200 Hz–5 MHz and 553–699 K, respectively. Both impedance and modulus analysis exhibit the grain and grain boundary contribution to the electrical response of the sample. The temperature dependence of the bulk and grain boundary conductivity were found to obey the Arrhenius law with activation energies Eg?=?0.94 (3)?eV and Egb?=?0.89 (1)?eV. The grain-and-grain boundary conductivities at 573 K are 1.07?×?10?4 and 1.16?×?10?5?1 cm?1). The scaling behavior of the imaginary part of the complex impedance suggests that the relaxation describes the same mechanism at various temperatures. The near value of the activation energies obtained from the equivalent circuit, conductivity data, and analysis of M″ confirms that the transport is through ion hopping mechanism.  相似文献   

5.
A. Ben Rhaiem  M. Megdich  K. Guidara 《Ionics》2013,19(10):1381-1386
The NaBaPO4 compound was obtained by conventional solid-state reaction. The sample was characterized by X-ray powder diffraction and electrical impedance spectroscopy. The impedance plots show semicircle arcs at different temperatures, and an electrical equivalent circuit has been proposed. The circuits consist of the parallel combination of bulk resistance R p and constant phase elements CPE. The dielectric relaxation is described by a non-Debye model. The frequency dependence of the conductivity is interpreted in term of the well-known universal dynamic response $ {\sigma_{\mathrm{ac}}}={\sigma_{\mathrm{dc}}}\left[ {1+{{{\left( {{\omega \left/ {{{\omega_h}}} \right.}} \right)}}^n}} \right] $ . The near value of activation energies obtained from the analyses of M″, conductivity data and equivalent circuit confirms that the transport is through ion hopping mechanism dominated by the motion of the Na+ ions in the structure. The better properties obtained for NaBaPO4 can be attributed to the Ba derivatives’ larger size of the bottlenecks along the channels.  相似文献   

6.
Scanning electron microscopy (SEM), X- ray diffraction (XRD), density (d), oxygen molar volume (Vm) and dc conductivity of different compositions of calcium vanadate glasses are reported. SEM exhibits a surface without any presence of a microstructure which is a characteristic of the amorphous phase. The overall features of these XRD curves confirm the amorphous nature of the present glasses. Density was observed to decrease with an increase in V2O5 content. The experimental results were analyzed with reference to theoretical models existing in the literature. It has been observed that the high-temperature conductivity data are consistent with Mott's nearest-neighbor hopping model. However, both Mott variable-range hopping (VRH) and Greaves intermediate range hopping models are found to be applicable. The hopping at high temperatures in the calcium vanadate glasses occurs by non-adiabatic process in contrast to the vanadate glasses formed with conventional network formers. The hopping model of Schnakenberg can predict the temperature dependence of the conductivity data. The percolation model of Triberis and Friedman applied to the small polaron hopping (SPH) regime is also consistent with data. The various model parameters such as density of states, hopping energy, etc., obtained from the best fits were found to be consistent with the glass compositions.  相似文献   

7.
The crystal structure, the 13C NMR spectroscopy and the complex impedance have been carried out on [Cd3(SCN)2Br6(C2H9N2)2]n. Crystal structure shows a 2D polymeric network built up of two crystallographically independent cadmium atoms with two different octahedral coordinations. This compound exhibits a phase transition at (T=355±2 K) which has been characterized by differential scanning calorimetry (DSC), X-rays powder diffraction, AC conductivity and dielectric measurements. Examination of 13C CP/MAS line shapes shows indirect spin–spin coupling (14N and 13C) with a dipolar coupling constant of 1339 Hz. The AC conductivity of this compound has been carried out in the temperature range 325–376 K and the frequency range from 10−2 Hz to 10 MHz. The impedance data were well fitted to two equivalent electrical circuits. The results of the modulus study reveal the presence of two distinct relaxation processes. One, at low frequency side, is thermally activated due to the ionic conduction of the crystal and the other, at higher frequency side, gradually disappears when temperature reaches 355 K which is attributed to the localized dipoles in the crystal. Moreover, the temperature dependence of DC-conductivity in both phases follows the Arrhenius law and the frequency dependence of σ(ω,T) follows Jonscher's universal law. The near values of activation energies obtained from the conductivity data and impedance confirm that the transport is through the ion hopping mechanism.  相似文献   

8.
The Li2BaP2O7 compound has been obtained by the conventional solid-state reaction and characterized by X-ray powder diffraction. The title material crystallizes in the monoclinic system with C2/c space group. Electrical properties of the compound have been studied using complex impedance spectroscopy in the frequency range 200 Hz–5 MHz and temperature range 589–724 K. Temperature dependence of the DC conductivity and modulus was found to obey the Arrhenius law. The obtained values of activation energy are different which confirms that transport in the titled compound is not due to a simple hopping mechanism. AC conductivity measured follows the power-law dependence σ AC?~?ω s typical for charge transport. Therefore, the experimental results are analyzed with various theoretical models. Temperature dependence of the power law exponent s strongly suggests that tunneling of large polarons is the dominant transport process.  相似文献   

9.
The complex conductivity of La2CuO4+δ has been investigated for frequencies 20 Hz≤ν≤4 GHz and temperatures 1.5K≤T≤450 K. Two single crystals with δ≈0 and δ≈0.02 were investigated, using dc (four-probe), reflectometric and contact-free techniques. At high temperatures the dc conductivity is thermally activated with low values of the activation energy. For low temperatures Mott's variable range hopping dominates. The real and imaginary parts of the ac conductivity follow a power-law dependence σ~v s, typical for charge transport by hopping processes. A careful analysis of the temperature dependence of the ac conductivity and of the frequency exponents has been performed. It is not possible to explain all aspects of the ac conductivity in La2CuO4+δ by standart hopping models. However, the observed minimum in the temperature dependence of the frequency exponents strongly suggests tunneling of large polarons as dominant transport process.  相似文献   

10.
N. Nouiri  K. Jaouadi  N. Zouari  T. Mhiri 《Ionics》2017,23(6):1461-1470
The Rb3(HSeO4)2.5(H2PO4)0.5 compound was prepared and its thermal behavior and electric properties were investigated. The thermogravimetry (TGA) analysis and the differential scanning calorimetric (DSC) show the presence of a structural phase transition of the title compounds at 374 K which is confirmed by the variation of fp and σdc as a function of temperature. The complex impedance of the Rb3(HSeO4)2.5(H2PO4)0.5 compound has been investigated in the temperature range of 295–453 K and in the frequency range 209 Hz–1 MHz. The impedance plots show semicircle arcs at different temperatures, and an electrical equivalent circuit has been proposed to explain the impedance results. The circuits consist of the parallel combination of bulk resistance Rp and constant phase elements CPE1 in series with fractal capacity CPE2. The frequency dependence of the conductivity is interpreted in terms of Jonscher’s law. The conductivity dc follows the Arrhenius relation. The near value of activation energies obtained from the analysis of modulus, conductivity data, and circuit equivalent confirm that the transport is through the ion hopping mechanism, dominated by the motion of the H+ proton in the structure of the investigated materials.  相似文献   

11.
The frequency dependence of the AC conductivity of (NH4)3H(SO4)1.42(SeO4)0.58 (NHSSe) has been presented in the temperature range (299-393 K). The conductivity data has been analysed in terms of two theoretical models: hopping over a potential barrier model and quantum-tunnelling model. Values of the exponent s, decrease from 1.08 to 0.91 with increasing temperature and the experimental data revel that the hopping model is the rate determining mechanism.  相似文献   

12.
S. Kamoun  F. Hlel  M. Gargouri 《Ionics》2014,20(8):1103-1110
This paper reports conduction mechanism in LiCuFe2(VO4)3 over a wide range of temperatures (300 to 712 K) and frequencies (209 Hz to 5 MHz). The DC conductivity of the material is thermally activated with activation energy about 0.66 eV. In LiCuFe2(VO4)3, the electrical conductivity is probably due to the hopping of alkali lithium ion along the channel [001]. Temperature dependence of AC conductivity is studied at different frequencies. Frequency exponent s is found to decrease with increase in temperature. The results have been explained on the basis of correlated barrier hopping (CBH) model. Numerical calculations agree well with experimental results. The results show that the frequency and temperature-dependent behavior of AC conductivity of the studied materials are predominantly due to single polaron hopping.  相似文献   

13.
The complex conductivity of La2CuO4+δ has been investigated for frequencies 20 Hz≤ν≤4 GHz and temperatures 1.5K≤T≤450 K. Two single crystals with δ≈0 and δ≈0.02 were investigated, using dc (four-probe), reflectometric and contact-free techniques. At high temperatures the dc conductivity is thermally activated with low values of the activation energy. For low temperatures Mott's variable range hopping dominates. The real and imaginary parts of the ac conductivity follow a power-law dependence σ∼v s, typical for charge transport by hopping processes. A careful analysis of the temperature dependence of the ac conductivity and of the frequency exponents has been performed. It is not possible to explain all aspects of the ac conductivity in La2CuO4+δ by standart hopping models. However, the observed minimum in the temperature dependence of the frequency exponents strongly suggests tunneling of large polarons as dominant transport process.  相似文献   

14.
The high temperature drift mobility (μd) of charge carriers in nonstoichiometric cerium dioxide (CeO2?x) has been calculated by combining the electrical conductivity and nonstoichiometry data on the basis of the oxygen vacancy model with correct ionization state. The electrical conductivity was measured by a four-probe d.c. technique and the nonstoichiometry by thermogravimetric analysis. The dilute solution model of the point defects is valid up to x = 0.03. From the magnitude of μd and its temperature dependence, the charge carriers in CeO2?x, are proposed to be small-polarons formed by localization of electrons at cerium sites and the charge transport process is proposed to occur by a hopping mechanism. The observed temperature dependence of μd is in accord with that derived by Holstein and Friedman for small-polaron transport by the hopping mechanism. The activation energy of mobility is found to increase with increasing x as expected for the hopping model.  相似文献   

15.
Polycrystalline sample of Ba3V2O8 was prepared by a high-temperature solid-state reaction technique. Preliminary X-ray diffraction (XRD) analysis confirms the formation of single-phase compound of hexagonal (rhombohedral) crystal structure at room temperature. Microstructural analysis by scanning electron microscope (SEM) shows that the compound has well defined grains, which are distributed uniformly throughout the surface of the sample. The dielectric properties of the compound studied in a wide frequency range (102–106 Hz) at different temperatures (25–400 °C), exhibits that they are temperature dependent. Detailed analysis of impedance spectra showed that the electric properties of the material are strongly dependent on frequency and temperature. The activation energy, calculated from the temperature dependence of ac conductivity (dielectric data), was found to be 0.23 eV at 50 kHz in the higher temperature region.  相似文献   

16.
Polycrystalline La0.57Nd0.1Pb0.33Mn0.8Ti0.2O3 (LNPMT) is prepared by the solid-state reaction technique. The formation of single phase material was confirmed by X-ray diffraction studies, and it was found to be a rhombohedral phase at room temperature. The impedance plane plot shows semicircle arcs at different temperatures and an electrical equivalent circuit has been proposed to explain the impedance results. The frequency dependent conductivity spectra follow the universal power law. The activation energy deduced from analysis of the imaginary part of electric modulus and imaginary impedance is found to be ∼75 meV. Such a value of activation energy indicates that the conduction mechanism for the sample is due to electron hopping. The imaginary part of the electric modulus suggests that the relaxation describes the same mechanism at various temperatures.  相似文献   

17.
Polycrystalline sample with (Na0.5Bi0.5)ZrO3 (NBZ) stoichiometry was prepared using a high-temperature solid-state reaction technique. X-ray diffraction (XRD) analyses indicate the formation of a single-phase perovskite-type orthorhombic structure. AC impedance plot is used as tool to analyse the electrical behaviour of the sample as a function of temperature at different frequency. The AC impedance studies revealed the presence of grain boundary effect and evidence of a negative temperature coefficient of resistance (NTCR) character. Pseudo Cole-Cole and complex electric modulus analyses indicated non-Debye-type dielectric relaxation. The AC conductivity obeys the universal power law. The pair approximation type correlated barrier hopping (CBH) model explains the universal behaviour of the s exponent. The apparent activation energy to the conduction process and minimum hopping distance are discussed.  相似文献   

18.
R. Ben Said  B. Louati  K. Guidara 《Ionics》2014,20(2):209-219
The pyrophosphate K2NiP2O7 has been synthesized by the classic ceramic method and characterized by X-ray diffraction, solid-state 31P magic angle spinning (MAS) NMR, and IR and electrical impedance spectroscopy. The solid-state 31P MAS NMR, performed at 121.49 MHz, shows two isotropic resonances at ?17.66 and ?19.94 ppm, revealing the existence of two phosphorus environments in the structure. The electrical conductivity and dielectric properties have been investigated in the frequency and the temperature range of 200 Hz–1 MHz and 603–728 K, respectively. The frequency dependence of the conductivity is interpreted using the augmented Jonscher relation. The close values of activation energies obtained from the analysis of hopping frequency and dc conductivity imply that the transport is through ion hopping mechanism. The charge carrier concentration in the investigated sample has been evaluated using the Almond–West formalism and shown to be independent of temperature. Thermodynamic parameters such as the free energy of activation ΔF, the enthalpy ΔH, and the change in entropy ΔS have been calculated.  相似文献   

19.
《Solid State Ionics》2006,177(5-6):423-428
High-quality epitaxial thin films of Sr4Fe6O13 have been deposited on NdGaO3(001) substrates by pulsed laser deposition. The transport properties have been characterized by impedance spectroscopy. The temperature dependence of conductivity suggests a mechanism of adiabatic hopping by small polarons, in agreement with previous results in bulk samples. The transport properties show a clear dependence on the film thickness with the thinner films (10 nm) presenting conductivity values in oxygen one order of magnitude higher than the thicker ones (313 nm). We correlate this behaviour with the thickness dependence of the epitaxial strain.  相似文献   

20.
R. Ben Said  B. Louati  K. Guidara  S. Kamoun 《Ionics》2014,20(8):1071-1078
The LiNi1.5P2O7 compound was prepared by the solid-state reaction method at 923 K and characterized through XRD and Raman spectroscopy techniques. The impedance spectroscopy measurements were performed in the frequency and the temperature range (300 Hz–5 MHz) and (633–729 K), respectively. The ac conductivity for grain contribution is interpreted using the universal Jonscher’s power low. The exponent n decreases with increasing temperature which reveals that the conduction inside the studied material is insured by the correlated barrier hopping (CBH) model. The parameters of CBH model were determined showing that the ac conduction is realised by single-polaron hopping mechanism. Thermodynamic parameters such as the free energy for dipole relaxation ΔF, the enthalpy ΔH, and the change in entropy ΔS have been calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号