首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the time evolution of two electron spin states in a double quantum-dot system, which includes a nearby quantum point contact (QPC) as a measurement device. We find that the QPC measurement induced decoherence is in the microsecond timescale. We also find that the enhanced QPC measurement will trap the system in its initial spin states, which is consistent with the quantum Zeno effect.  相似文献   

2.
We theoretically investigate the spin-dependent Seebeck effect in an Aharonov–Bohm mesoscopic ring in the presence of both Rashba and Dresselhaus spin–orbit interactions under magnetic flux perpendicular to the ring. We apply the Green's function method to calculate the spin Seebeck coefficient employing the tight-binding Hamiltonian. It is found that the spin Seebeck coefficient is proportional to the slope of the energy-dependent transmission coefficients. We study the strong dependence of spin Seebeck coefficient on the Fermi energy, magnetic flux, strength of spin–orbit coupling, and temperature. Maximum spin Seebeck coefficients can be obtained when the strengths of Rashba and Dresselhaus spin–orbit couplings are slightly different. The spin Seebeck coefficient can be reduced by increasing temperature and disorder.  相似文献   

3.
《Physics letters. A》2004,324(4):331-336
Based on one-dimensional quantum waveguide theory we study the symmetry of the spin-polarized transmission through an Aharonov–Bohm ring with a magnetic impurity, in which the spin-exchange interaction between an incident electron and the magnetic impurity leads to spin–flip scattering. It shows that for some special Fermi energies, both spin-up and spin-down transmission coefficients are symmetric under the flux reversal in the spin–flip scattering process and the spin-polarized conductance also is symmetric. In above case, AB oscillations of spin-down transmission and reflection are perfectly identical. The effect of the exchange interaction strength and Fermi wave vector on transmission behavior of spin-state electrons is examined.  相似文献   

4.
王瑞  孔令民  周运清  张存喜  邢志勇 《中国物理 B》2010,19(12):127202-127202
In this paper the quantum transport in a dot-array coupled with an Aharonov–Bohm (AB) ring is investigated via single-band tight-binding Hamiltonian. It is shown that the output spin current is a periodic function of the magnetic flux in the quantum unit Φ0. The resonance positions of the total transmission probability do not depend on the size of the AB ring but the electronic spectrum. Moreover, the persistent currents in the AB ring is also spin-polarization dependent and different from the isolated AB ring where the persistent current is independent of spin polarization.  相似文献   

5.
We consider electron spin qubits in quantum dots and define a measurement efficiency e to characterize reliable measurements via n-shot readouts. We propose various implementations based on a double dot and a quantum point contact (QPC) and show that the associated efficiencies e vary between 50% and 100%, allowing single-shot readout in the latter case. We model the readout microscopically and derive its time dynamics in terms of a generalized master equation, calculate the QPC current, and show that it allows spin readout under realistic conditions.  相似文献   

6.
Spin-density-functional theory of quantum point contacts (QPCs) reveals the formation of a local moment with a net of one electron spin in the vicinity of the point contact-supporting the recent report of a Kondo effect in a QPC. The hybridization of the local moment to the leads decreases as the QPC becomes longer, while the on site Coulomb-interaction energy remains almost constant.  相似文献   

7.
《Physics letters. A》2006,349(5):393-397
We study the Aharonov–Bohm (AB) effect in two-dimensional mesoscopic frame in hole systems. We show that differing from the AB effect in electron systems, due to the presence of both the heavy hole and the light hole, the conductances not only show the normal spin-unresolved AB oscillations, but also become spin-separated. Some schemes for spin filter based on the abundant interference characteristics are proposed and the robustness against the disorder of the proposed schemes is discussed.  相似文献   

8.
Asher Yahalom 《Physics letters. A》2013,377(31-33):1898-1904
It is shown that an Aharonov–Bohm (AB) effect exists in magnetohydrodynamics (MHD). This effect is best described in terms of the MHD variational variables (Kats, 2004; Yahalom and Lynden-Bell, 2008; Yahalom, 2010) [1], [10], [12]. If a MHD flow has a non-trivial topology some of the functions appearing in the MHD Lagrangian are non-single-valued. These functions have properties similar to the phases in the AB celebrated effect (Aharonov and Bohm, 1959; van Oudenaarden et al., 1998) [2], [3]. While the manifestation of the quantum AB effect is in interference fringe patterns (Tonomura et al., 1982) [4], the manifestation of the MHD Aharonov–Bohm effects are through new dynamical conservation laws.  相似文献   

9.
李华钟 《物理学进展》2011,19(4):386-408
本文较系统地但并非全面地讨论粒子的自旋轨道耦合。从基本概念到在介观物理的一些应用,特别着重讨论了自旋轨道耦合和量子几何相位的关系,也从作者的观点评论现代文献的一些有关问题和概述作者及其研究合作者的一些工作。本文讨论很大部分内容并不局限在介观尺度,而是相当普通的,可供物理各个领域研究参考。  相似文献   

10.
介观物理的粒子自旋轨道耦合和量子几何相位   总被引:4,自引:0,他引:4  
李华钟 《物理学进展》1999,19(4):386-408
本文较系统地但并非全面地讨论粒子的自旋轨道耦合。从基本概念到在介观物理的一些应用,特别着重讨论了自旋轨道耦合和量子几何相位的关系,也从作者的观点评论现代文献的一些有关问题和概述作者及其研究合作者的一些工作。本文讨论很大部分内容并不局限在介观尺度,而是相当普通的,可供物理各个领域研究参考。  相似文献   

11.
In previous works [1, 2], the 2-dimensional charge transport with parallel (in plane) magnetic field was considered from the theoretical point of view showing explicitly that the specific form of the emergent equation enforces the respective field solution to fulfil the Majorana condition. In this paper we review, explain and analyze these important results in the context of the generated physical effects, namely, the quantum ring as spin filter, the quantum Hall effect and a new one of pure topological origin (as the described by the Aharonov–Casher theorems). The link with supersymmetrical models is briefly discussed.  相似文献   

12.
In this work we study the electronic states in quantum dot–ring complex nanostructures with an on-center hydrogenic impurity. The influence of the impurity on Aharonov–Bohm energy spectra oscillations and intraband optical absorption is investigated. It is shown that in the presence of a hydrogenic donor impurity the Aharonov–Bohm oscillations in quantum dot–ring structures become highly tunable. Furthermore, the presence of the impurity drastically changes the intraband absorption spectra due to the strong controllability of the electron localization type.  相似文献   

13.
The Aharonov–Bohm effect in noncommutative (NC) quantum mechanics is studied. First, by introducing a shift for the magnetic vector potential we give the Schrödinger equations in the presence of a magnetic field on NC space and NC phase space, respectively. Then, by solving the Schrödinger equations, we obtain the Aharonov–Bohm phase on NC space and NC phase space, respectively.  相似文献   

14.
Niyazov  R. A.  Aristov  D. N.  Kachorovskii  V. Yu. 《JETP Letters》2021,113(11):689-700
JETP Letters - We review recent studies of the spin-dependent tunneling transport via an Aharonov–Bohm interferometer (ABI) formed by helical edge states. We focus on the experimentally...  相似文献   

15.
We discuss holonomic quantum computation based on the scalar Aharonov–Bohm effect for a neutral particle. We show that the interaction between the magnetic dipole moment and external fields yields a non-abelian quantum phase allowing us to make any arbitrary rotation on a one-qubit. Moreover, we show that the interaction between the magnetic dipole moment and a magnetic field in the presence of a topological defect yields an analogue effect of the scalar Aharonov–Bohm effect for a neutral particle, and a new way of building one-qubit quantum gates.  相似文献   

16.
严蕾  王海霞  殷雯  王芳卫 《中国物理 B》2014,23(2):20305-020305
We study the dynamics of two electron spins in coupled quantum dots (CQDs) monitored by a quantum point contact (QPC) detector. Their quantum state can be measured by embedding the QPC in an LC circuit. We derive the Bloch-type rate equations of the reduced density matrix for CQDs. Special attention is paid to the numerical results for the weak measurement condintion under a strong Coulomb interaction. It is shown that the evolution of QPC current always follows that of electron occupation in the right dot. In addition, we find that the output voltage of the circuit can reflect the evolution of QPC current when the circuit and QPC are approximately equal in frequency. In particular, the wave shape of the output voltage can be improved by adjusting the circuit resonance frequency and bandwidth.  相似文献   

17.
We explore the low-frequency noise of interacting electrons in a one-dimensional structure (quantum wire or interaction-coupled edge states) with counterpropagating modes, assuming a single channel in each direction. The system is driven out of equilibrium by a quantum point contact (QPC) with an applied voltage, which induces a double-step energy distribution of incoming electrons on one side of the device. A second QPC serves to explore the statistics of outgoing electrons. We show that measurement of a low-frequency noise in such a setup allows one to extract the Luttinger liquid constant K which is the key parameter characterizing an interacting 1D system. We evaluate the dependence of the zero-frequency noise on K and on parameters of both QPCs (transparencies and voltages).  相似文献   

18.
We study the interaction between two adjacent but electrically isolated quantum point contacts (QPCs). At high enough source-drain bias on one QPC, the drive QPC, we detect a finite electric current in the second, unbiased, detector QPC. The current generated at the detector QPC always flows in the opposite direction than the current of the drive QPC. The generated current is maximal, if the detector QPC is tuned to a transition region between its quantized conductance plateaus and the drive QPC is almost pinched-off. We interpret this counterflow phenomenon in terms of an asymmetric phonon-induced excitation of electrons in the leads of the detector QPC.  相似文献   

19.
Studies of the Abrikosov vortex motion in superconductors based on time-dependent Ginzburg–Landau equations reveal an opportunity to detect the values of the Aharonov–Bohm type curl-less vector potentials without closed-loop electron trajectories encompassing the magnetic flux.  相似文献   

20.
This is a review of electronic quantum interference in mesoscopic ring structures based on graphene, with a focus on the interplay between the Aharonov–Bohm effect and the peculiar electronic and transport properties of this material. We first present an overview on recent developments of this topic, both from the experimental as well as the theoretical side. We then review our recent work on signatures of two prominent graphene-specific features in the Aharonov–Bohm conductance oscillations, namely Klein tunneling and specular Andreev reflection. We close with an assessment of experimental and theoretical development in the field and highlight open questions as well as potential directions of the developments in future work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号