首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We put forward a new and feasible scheme to realize joint remote preparation of four-particle cluster-type states based on two quaternate partially entangled states as quantum channels. During the preparation, each of the states’ senders is just required to perform a bipartite projective measurement in a 2×2-dimensional Hilbert space, and the receiver needs to implement some appropriate unitary operations including a local triplet collective transformation. It is proved that our scheme can be accomplished in a probabilistic manner, and the success probability of preparation (SPP) is dependent on the entangled states set up in prior. Moreover, it is explored that SPP can be greatly enhanced to be quadruple of that in general case, when the prepared states belong to some special ensembles. And the scheme feasibility is evaluated finally.  相似文献   

2.
Using partial entangled states as the quantum channel, two schemes for probabilistic remote preparation of the four-particle cluster-type state with real and complex coefficients are presented. In the first scheme, the sender and the receiver share two partial Bell states and one partial three-qubit GHZ stats as the quantum channel, and the sender can help a remote receiver to prepare a four-particle entangled cluster-type state by using three-qubit projective measurements with certain probability. In the second scheme, the quantum channel is composed of two partial three-qubit GHZ states, the remote state preparation (RSP) can be successfully realized via the positive operator valued measure (POVM), and the two-particle projective measurements are also needed in this process. The total success probability and classical communication cost are calculated.  相似文献   

3.
A protocol for remotely preparing a four-particle entangled cluster-type state by a set of new four-particle orthogonal basis projective measurement. It is secure that the entangled four-particle cluster-type state can be successfully realized at Bob place. Moreover we have also investigated that quantum channel shared by Alice and Bob is composed of four non-maximally entangled states. It is shown that Bob can also reestablish the original state (to be prepared remotely) with certain probability by means of appropriate unitary transformation.  相似文献   

4.
In this paper, two novel schemes for deterministic joint remote state preparation(JRSP) of arbitrary single- and twoqubit states are proposed. A set of ingenious four-particle partially entangled states are constructed to serve as the quantum channels. In our schemes, two senders and one receiver are involved. Participants collaborate with each other and perform projective measurements on their own particles under an elaborate measurement basis. Based on their measurement results,the receiver can reestablish the target state by means of appropriate local unitary operations deterministically. Unit success probability can be achieved independent of the channel's entanglement degree.  相似文献   

5.
In this paper, we make a study on how to efficiently transmit an arbitrary two-qubit pure state to remote receiver via non-maximal entangled quantum channel. As a special case, in the first section we present a controlled-joint remote state preparation scheme based on maximally entangled channel. By some local convertible projective measurement bases, two message carriers and one controller can help the receiver Charlie reconstruct the desired state with success probability p=100 %. Then, we extend it to the case of non-maximally entangled channel. Utilizing positive operator-valued measure (POVM) measurement instead of projective measurement, the controller can assist the two senders to fulfill the task. Compared with some previous schemes, our protocol will succeed with a higher probability. And success or failure will only depend on the controller’s measurement outcome, but has nothing to do with two senders’ measurement results.  相似文献   

6.
Remote State Preparation of a Greenberger-Horne-Zeilinger Class State   总被引:1,自引:0,他引:1  
In this paper, we propose a scheme for the remote preparation of a three-particle Greenberger-Horne-Zeilinger class state by a two-particle entangled state and a three-particle entangled state. It is shown that, by this scheme, only two classical bits and one two-particle projective measurement are enough for such preparation.  相似文献   

7.
We consider the remote preparation of a six-particle cluster-type state using two four-particle GHZ states as the quantum channel in this paper. For the entangled six-particle cluster-type state with real coefficients, a deterministic remote state preparation scheme is proposed. It is shown that, conditioned on the outcome of Alice’s measurement, Bob can successfully prepare the target state by performing an appropriate unitary operation. With regard to the more general six-particle cluster-type state, we give another scheme which can successfully prepare the entangled state with probability 25%. And the probability of success can reach up to 50% or even 1 in some special cases. Furthermore, the classical communication costs in different cases are discussed.  相似文献   

8.
A novel blind quantum signature scheme based on cluster states is introduced. Cluster states are a type of multi-qubit entangled states and it is more immune to decoherence than other entangled states. The controlled four-particle cluster states are created by acting controlled-Z gate on particles of four-particle cluster states. The presented scheme utilizes the above entangled states and simplifies the measurement basis to generate and verify the signature. Security analysis demonstrates that the scheme is unconditional secure. It can be employed to E-commerce systems in quantum scenario.  相似文献   

9.
We present a protocol for probabilistic remote preparation of a four-particle entangled W state.The quantum channel is composed of two partial entangled four-particle cluster states.We calculate the total successful probability and total classical communication cost required for the general case and for all kinds of the special cases,respectively.It is shown that for two maximally entangled four-particle cluster states,such a scheme for the general case has the total successful probability of 25%and only consumes the total classical communication of 1 bit,while this scheme for the special cases under certain conditions can possess successful probability of 50%or 100%,the required classical communication will only be 2 bits or 4 bits.Meantime,we give in detail all unitary transformations for the general case and for all kinds of the special cases,respectively.  相似文献   

10.
A deterministic secure quantum communication scheme using entanglement swapping is proposed. The sender prepares four-particle genuine entangled states and sends two particles in each state to the receiver and remains the rest particles. If the quantum channel is secure, they begin to communicate. After their four-particle projective measurements, the receiver can obtain the secret information according to his measurement outcomes and classical information from the sender. Using entanglement swapping, there are no particles carrying secret information to be transmitted.  相似文献   

11.
In this work, a novel scheme is proposed to realize joint remote preparation regarding a class of four-qubit cluster-like entangled states based on optimal positive operator-valued measurements. To obtain the preparation of desired states, two tripartite non-maximally entangled states are taken as quantum channels, and devoted to building the robust connections amongst the states’ senders and receiver. It turns out that the present scheme enables one to achieve joint remote state preparation with certain success probability (SP) and unit fidelity. Moreover, several nontrivial issues are discussed, including the improvement of SP and the correlation between SP and the employed channels.  相似文献   

12.
We present a protocol for probabilistic remote preparation of a four-particle entangled W state. The quantum channel is composed of two partial entangled four-particle cluster states. We calculate the total successful probability and total classical communication cost required for the general case and for all kinds of the special cases, respectively. It is shown that for two maximally entangled four-particle cluster states, such a scheme for the general case has the total successful probability of 25% and only consumes the total classical communication of 1 bit, while this scheme for the special cases under certain conditions can possess successful probability of 50% or 100%, the required classical communication will only be 2 bits or 4 bits. Meantime, we give in detail all unitary transformations for the general case and for all kinds of the special cases, respectively.  相似文献   

13.
We present a new quantum private comparison protocol based on the four-particle χ-type states. Different from previous protocols using the four-particle χ-type states, our protocol have some advantages. Without using the entangled character, we only need to prepare one type of χ-type state and N χ-type states. And we use the Pauli local unitary operation on particles to encode the information and to extract information by measurement. We also discuss that our protocol can withstand all various kinds of outside attacks and participant attacks.  相似文献   

14.
潘长宁  方卯发 《中国物理》2007,16(5):1225-1228
We propose an effective scheme for the entanglement concentration of a four-particle state via entanglement swapping in an ion trap. Taking the maximally entangled state after concentration as a quantum channel, we can faithfully and determinatively teleport quantum entangled states from Alice to Bob without the joint Bell-state measurement. In the process of constructing the quantum channel, we adopt entanglement swapping to avoid the decrease of entanglement during the distribution of particles. Thus our scheme provides a new prospect for quantum teleportation over a longer distance. Furthermore, the success probability of our scheme is 1.0.  相似文献   

15.
This paper presents a scheme for probabilistic remote preparation of a three-particle entangled Greenberger-Horne-Zeilinger (GHZ) state via three-particle orthonormal basis projective measurement, and then directly generalize the scheme to multi-particle case. It is shown that by using N pairs of bipartite non-maximally entangled states as the quantum channel and N-particle orthonormal basis projective measurement, the multi-particle remote preparation can be successfully realized with a certain probability.  相似文献   

16.
在四能级系统中实现单粒子及两粒子量子态的远程制备   总被引:1,自引:1,他引:0  
本文提出两种协议来实现远程态制备.第一个方案描述基于两体最大纠缠信道,如何远程制备四能级系统中的任意单粒子量子态.然后由第一个方案概括出第二个方案,即在四能级系统中实现两粒子纠缠态的远程制备方案.在两种制备的过程中, 需要分别实施一个单粒子投影测量和一个两粒子投影测量.结果表明,两个方案都能以大于25%的几率忠信地实现.此外,对于两类特殊态,即赤道态和实数态,其成功概率大大提高至100%,此时我们几率的协议转变为决定性的协议.  相似文献   

17.
本文提出两种协议来实现远程态制备.第一个方案描述基于两体最大纠缠信道,如何远程制备四能级系统中的任意单粒子量子态.然后由第一个方案概括出第二个方案,即在四能级系统中实现两粒子纠缠态的远程制备方案.在两种制备的过程中, 需要分别实施一个单粒子投影测量和一个两粒子投影测量.结果表明,两个方案都能以大于25%的几率忠信地实现.此外,对于两类特殊态,即赤道态和实数态,其成功概率大大提高至100%,此时我们几率的协议转变为决定性的协议.  相似文献   

18.
For two parties sharing the original state, a scheme for remote preparation of the two-particle entangled state by three partial two-particle entangled states as the quantum channel is presented, and then directly generalize the scheme for remotely preparing a multipartite GHZ-class state for M senders. It is shown that the receiver can obtain the unknown state with certain probability under the condition that only and only if all the senders collaborate with each other. The N-particle projective measurement and the von Neumann measurement are needed in our scheme. The probability of the successful remote state preparation and classical communication cost are calculated.  相似文献   

19.
邓黎  陈爱喜  徐彦秋 《中国物理 B》2008,17(10):3725-3728
In this paper, a scheme is proposed for remote state preparation (RSP) with cavity quantum electrodynamics (QED). In our scheme, two observers share two-atom nonmaximally entangled state as quantum channels and can realize remote preparation of state of an atom. We also propose a generalization for remote preparation of N-atom entangled state by (N+1)-atom GHZ-like state (N ≥ 2). By this scheme, one single-atom projective measurement is enough for the RSP of a qubit or N-atom entangled state, and the probability of success for RSP is unity. Furthermore, we have considered the case where observers use W-like state as quantum channels to realize RSP of a qubit. We compare our scheme with existing ones.  相似文献   

20.
In this paper, we propose a scheme for joint remotely preparing an arbitrary seven-qubit cluster-type state by using several GHZ entangled states as the quantum channel. The coefficients of the prepared states can be not only real, but also complex. Firstly, Alice performs a three-qubit projective measurement according to the amplitude coefficients of the target state, and then Bob carries out another three-qubit projective measurement based on its phase coefficients. Next, one three-qubit state containing all information of the target state is prepared with suitable operation. Finally, the target seven-qubit cluster-type state can be prepared by introducing four auxiliary qubits and performing appropriate local unitary operations based on the prepared three-qubit state in a deterministic way. The receiver’s all recovery operations are summarized into a concise formula. Furthermore, it’s worth noting that our scheme is more novel and feasible with the present technologies than most other previous schemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号