首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Li4Ti5O12 nanoparticles were precipitated from ethylene glycol solution of titanium tetra isopropoxide (Ti(O-iPr)4) and Li2O2 by refluxing at 197 °C for 12 h. The obtained particles were filtered and dried at 100 °C for 12 h, and the dried powder samples were heated at 320, 500 and 800 °C for 3 h. The X-ray diffraction patterns of the obtained samples exhibited a good fit with the spinel phase. The field emission-SEM images of the dried powder sample and the samples heated at 320, 500 and 800 °C for 3 h showed a uniform spherical morphology with a particle size of 5, 8, 10 and 400 nm, respectively. According to the results of electrochemical testing, the dried powder sample and the samples heated at 320, 500, and 800 °C for 3 h showed initial capacities of 200, 310, 320, and 260 mA h/g, respectively, at a current density of 0.05 mA/cm2. Nanosized (6–8 nm) particles with good crystallinity were obtained by controlling the synthesis conditions. The sample heated at 500 °C for 3 h exhibited a high capacity and an excellent rate capability over 60 cycles.  相似文献   

2.
Monodisperse Li4Ti5O12 hollow spheres were prepared by using carbon spheres as templates. Scanning electron microscopy images show hollow spheres that have an average outer diameter of 1.0 μm and an average wall thickness of 60 nm. Compared with Li4Ti5O12 solids, the hollow spherical Li4Ti5O12 exhibit an excellent rate capability and capacity retention and can be charged/discharged at 10 C (1.7 A g−1) with a specific capacity of 100 mA h g−1, and after 200 charge and discharge cycles at 2 C, their specific capacity remain very stable at 150 mA h g−1. It is believed that the hollow structure has a relatively large contact surface between Li4Ti5O12 and liquid electrolyte, resulting in a better electrochemical performance at high charge/discharge rate.  相似文献   

3.
Novel CGO/NiO–CGO dual-layer hollow fibres (HFs) have been fabricated in a single-step co-extrusion and co-sintering process. LSCF–CGO cathodes layers were then deposited onto the dual-layer HFs to construct micro-tubular SOFCs. The NiO in the micro-tubular HF–SOFCs was reduced at 550 °C using hydrogen gas to form Ni anodes. Scanning electron microscope images showed that the dual-layer HFs have porous anodes and dense electrolyte layers. Preliminary measurements with a HF–SOFC fed with H2 and atmospheric oxygen, produced maximum power densities of 420 W m−2 and 800 W m−2 at 450 °C and 550 °C, respectively.  相似文献   

4.
Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) hollow fibers were fabricated using a phase inversion/sintering method. As oxygen permeation of BSCF hollow fibers is controlled by the rate surface exchange kinetics, catalytic Ag particles were coated on both inner and outer surfaces using chemical deposition method, as verified by SEM and EDX. The Ag coated BSCF membranes showed up to 100% increase in oxygen permeation at 700 °C, and improvements lower than 10% were measured at 950 °C as compared with unmodified membranes. It was found that Ag catalyst surface loading was non-homogenous and concentrated on the perovskite grain boundaries. As a result, lighter Ag surface loading delivered improved oxygen flux while oxygen flux reached a maximum even though in the presence of excess catalyst loading. The catalytic activity of Ag was beneficial in enhancing surface reaction kinetics up to 850 °C attributed to the spillover effect. Above this temperature, the increase in oxygen permeation rate was marginally diminished due to the reduction of the spillover effect.  相似文献   

5.
A dense perovskite hollow fiber made of BaCoxFeyZrzO3−δ (BCFZ) was evaluated for the oxygen separation at low temperatures (400–500 °C). An oxygen permeation flux of 0.45 ml/min cm2 was obtained at 500 °C, which is the first oxygen permeation data reported at such low temperature so far. A degradation of the oxygen permeation at 500 °C was observed, but the oxygen fluxes through the hollow fiber membrane can be regenerated by thermal treatment at 925 °C for 1 h in air. Energy-dispersive X-ray spectroscopy (EDXS) shows that a strong element segregation occurs in the membrane during operation at low temperature.  相似文献   

6.
This article presents a novel route to prepare hollow silica microspheres with well-defined wall thickness by using cross-linked polystyrene (PS) microspheres as templates with the assistance of supercritical carbon dioxide (SC-CO2). In this approach, the cross-linked PS templates can be firstly prepared via emulsifier-free polymerization method by using ethylene glycol dimethacrylate or divinylbenzene as cross-linkers. Then, the silica shell from the sol–gel process of tetraethyl orthosilicate (TEOS) which was penetrated into the PS template with the assistance of SC-CO2 was obtained. Finally, the hollow silica spheres were generated after calcinations at 600 °C for 4 h. The shell thickness of the hollow silica spheres could be finely tuned not only by adjusting the TEOS/PS ratio, which is the most frequently used method, but also by changing the pressure and aging time of the SC-CO2 treatment. Fourier transform infrared spectroscopy, transmission electron microscopy, and scanning electron microscope were used to characterize these hollow silica spheres.  相似文献   

7.
The formation of plate-like calcium phosphate particles with slit-shaped micropores produced from the forced hydrolysis reaction of 10?mM Ca(OH)2, 3.2?mM triphosphate(tripolyphosphate, tpp; $ {{\text{P}}_3}{\text{O}}_{{10}}^{{5 - }} $ ) and 20?mM HCl mixed solution at 100?°C for 2?h were investigated. The molecular sieve effect of produced particles was also explored by using five kinds of adsorptives with various molecular diameters. The large thin plate-like particles as prepared exhibited a large and sharp peak at 2θ?=?6.929° with small diffraction patterns of β-Ca2P2O7. This characteristic peaks at 2θ?=?6.929° suggested that the particles possess a layer structure with ordered basal plane and the large thin plate-like particles are made up of thin sheets. However, the large peak at 2θ?=?6.929° shifted to higher 2θ value after evacuated the particles at 50~200?°C, and these characteristic peak was diminished after treated over 300?°C. The interlayer distances of basal plane were estimated to be 1.280 to 0.980?nm. TG and FTIR measurements disclosed that large amounts of water molecules exist in the particles. It was also revealed that tpp molecules are not completely hydrolyzed to phosphate (orthophosphate, op; $ {\text{PO}}_4^{{3 - }} $ ) ions but still remain tpp and diphosphate (pyrophosphate, pp: $ {{\text{P}}_2}{\text{O}}_7^{{4 - }} $ ) ones, and are adsorbed in slit-shaped micropores. The N2 adsorption isotherms for the particles were of Type II and they did not change significantly by changing the evacuation temperature from 25?°C to 300?°C. On the contrary, the amount of adsorbed H2O molecules on the particles after evacuated at 25 and 50?°C steeply increased at ca. 0.3?<?p/p 0 ?<?0.6 to provide a step-like adsorption isotherm, but it disappeared after evacuated over 75?°C. From the molecular adsorption experiments employing adsorptives with different molecular diameters, it was indicated that the slit-shaped micropores possess a width less than 0.353?nm being exhibits a high selective adsorption of H2O molecules into slit-shaped ultramicropores that are accessible to H2O molecules but not to N2 and other adsorptive ones. It was indicated that ultramicropores can be formed by the narrowing effect of residual tpp and pp ions unhydrolyzed in the slit-shaped micropores. The residual tpp and pp ions may serve for the adsorption of H2O molecules by their strong hydrogen bonding nature.  相似文献   

8.
The cathodic electrolysis of H2O2 (H2O2 + e → OH + OH) on a metal surface in the presence of calcium and phosphate ions results in the formation of calcium phosphate deposits on the metal surface. In this study, the deposits formed under various treatment conditions (pHs, concentrations and ratios of calcium/phosphate ions, and so on) were characterized by scanning electron spectroscopy (SEM), and X-ray diffractometry. The exclusive formation of hydroxyapatite, HAP, was observed under comparatively narrow conditions (pH 3–4, [Ca+]/[PO43−] = 25 mM/15 mM), which is clearly different from the reported conditions for the deposition of HAP on titanium substrates. HAP was deposited in the form of a layer, comprised of morphologically amorphous HAP flakes that were less than 20 nm thick. SEM and FTIR analyses of the deposit at different stages of H2O2-electrolysis revealed that a few dozen nanometer-sized spheres of amorphous calcium phosphate were formed in the first step and then fused with each other to form ribbon-like flakes of HAP or broken glass-like brushite, depending on the pH. The pH for HAP formation on a stainless steel surface was markedly lower than that used for titanium, and the observed process by which amorphous calcium phosphate is converted to HAP was markedly different from that for the electrochemical deposition (electrolysis of water) of HAP on a titanium substrate.  相似文献   

9.
V2O3 nanopowder with spherical particles was prepared by reducing pyrolysis of the precursor, (NH4)5[(VO)6(CO3)4(OH)9]·10H2O, in H2 atmosphere. The thermolysis process of the precursor in a H2 flow was investigated by thermogravimetric analysis and differential thermal analysis. The results indicate that pure V2O3 forms at 620°C and crystallizes at 730°C. The effects of various reductive pyrolysis conditions on compositions of V2O3 products were studied. Scanning electron micrographs show that the particles of the V2O3 powder obtained at 650°C for 1 h are spherical about 30 nm in size with more homogeneous distribution. Experiments show that nanopowder has larger adsorption capacity to gases and is more easily reoxidized by air at room temperature than micropowder. Differential scanning calorimetry experiment indicates that the temperature of phase transition of nano-V2O3 powder is −119.5°C on cooling or −99.2°C on heating. The transition heats are −12.55 J g−1 on cooling and 11.42 J g−1 on heating, respectively.  相似文献   

10.
The effect of different amounts of sodium dodecyl sulfate (SDS) and time of their addition to the system on the properties of calcium carbonate precipitated from aqueous solutions of CaCl2 and Na2CO3 were studied. From statistical evaluation it was found that average number of the particles deposited on glass surface and, average and total surface area they occupy depend on the amount of the surfactant and time of its addition. Only if the surfactant was added to the system just after the CaCl2 and Na2CO3 solutions mixing up, a decrease of these parameters took place, the greatest in the presence of 0.42 μmol of SDS. On the contrary, if SDS solution was added after 3 min, it caused an increase of the average and total surface area occupied by the CaCO3 particles, while the average number of particles changed only within standard deviation. From the obtained results it may be concluded that SDS can affect both nucleation and crystal growth of CaCO3, but its nature depends on the surfactant amount and time of its addition to the system.  相似文献   

11.
The hollow fiber composite membrane involving Zr0.84Y0.16O1.92 (YSZ) as an oxygen ionic conductor and La0.8Sr0.2MnO3−δ (LSM) as an electronic conductor was explored for oxygen separation application. The hollow fiber precursor was prepared by the phase-inversion process, and transformed to a gas-tight ceramic by sintering at 1350 °C. The as-prepared fiber exhibited a thermal expansion coefficient of 11.1 × 10−6 K−1 and a three-point bending strength of 152 ± 12 MPa. An oxygen permeation flux of 2.1 × 10−7 mol cm−2 s−1 was obtained under air/He gradient at 950 °C for a hollow fiber of length 57.00 mm and wall thickness 0.16 mm. The oxygen permeation flux remained unchanged when the sweeping gas was changed from helium to high concentration of CO2. Considering the satisfactory trade-off between the permeability and stability, the YSZ–LSM hollow fiber is promising for oxygen production applications.  相似文献   

12.
《化学:亚洲杂志》2017,12(22):2942-2949
Hollow hybrid nanostructures have received significant attention because of their unique structural features. This study reports a facile ion adsorption–heating method to fabricate hollow PbS‐TiO2 hybrid particles. In this method, the TiO2 spheres used as a substrate material to grow PbS are aggregates of many small amorphous TiO2 particles, and each small particle is covered with thioglycolic acid ligands through Ti4+–carboxyl coordination. When Pb2+ ions are added to a colloidal solution of these TiO2 spheres, these ions are adsorbed by sulfhydryl (‐SH) groups to form metal thiolates, and the C−S bond is dissociated by heating to release S2−. The S2− ions react with Pb2+ ions to form PbS without additive sulfur sources. Additionally, the amorphous TiO2 spheres are transformed into the anatase phase during the heating process. As a result, the crystallization of TiO2 spheres along with the formation of PbS is simultaneously carried out by heating. During the heating process, owing to the Kirkendall effect of S2− diffusion and the Ostwald ripening effect of the crystallization of amorphous TiO2 spheres, PbS‐TiO2 hollow hybrid structures can be obtained. The XRD and XPS characterizations proved the formation of anatase TiO2 and PbS. The TEM characterization confirmed the formation of hollow structures in the PbS‐TiO2 hybrid sample. The photocatalytic activity of the hollow PbS‐TiO2 hybrid spheres have been investigated for the degradation of Cr6+ under visible light. The results show that hollow PbS‐TiO2 hybrid spheres exhibited the highest photocatalytic activity, in which almost all the Cr6+ was degraded after 140 min.  相似文献   

13.
Cobalt–silicon mixed oxide materials (Co/Si=0.111, 0.250 and 0.428) were synthesised starting from Co(NO3)2·6H2O and Si(OC2H5)4 using a modified sol–gel method. Structural, textural and surface chemical properties were investigated by thermogravimetric/differential thermal analyses (TG/DTA), XRD, UV–vis, FT-IR spectroscopy and N2 adsorption at −196 °C. The nature of cobalt species and their interactions with the siloxane matrix were strongly depending on both the cobalt loading and the heat treatment. All dried gels were amorphous and contained Co2+ ions forming both tetrahedral and octahedral complexes with the siloxane matrix. After treatment at 400 °C, the sample with lowest Co content appeared amorphous and contained only Co2+ tetrahedral complexes, while at higher cobalt loading Co3O4 was present as the only crystalline phase, besides Co2+ ions strongly interacting with siloxane matrix. At 850 °C, in all samples crystalline Co2SiO4 was formed and was the only crystallising phase for the nanocomposite with the lowest cobalt content. All materials retained high surface areas also after treatments at 600 °C and exhibited surface Lewis acidity, due to cationic sites. The presence of cobalt affected the textural properties of the siloxane matrix decreasing microporosity and increasing mesoporosity.  相似文献   

14.
CdS hollow microspheres have been successfully prepared by a photochemical preparation technology at room temperature, using polystyrene latex particles as templates, CdSO4 as cadmium source and Na2S2O3 as both sulphur source and photo-initiator. The process involved the deposition of CdS nanoparticles on the surface of polystyrene latex particles under the irradiation of an 8 W UV lamp and the subsequent removal of the latex particles by dispersing in dichloromethane. Photochemical reactions at the sphere/solution interface should be responsible for the formation of hollow spheres. The as-prepared products were characterized by X-ray diffraction, transmission electron microscopy and scanning electron microscopy. Such hollow spheres could be used in photocatalysis and showed high photocatalytic activities in photodegradation of methyl blue (MB) in the presence of H2O2. The method is green, simple, universal and can be extended to prepare other sulphide and oxide hollow spheres.  相似文献   

15.
CeO2 hollow microspheres have been fabricated through a simple thermal decomposition of precursor approach. The precursor with an average size of 10 μm was prepared in a reverse microemulsions containing Ce(NO3)3·6H2O and CO(NH2)2 at 160 °C. The products were characterized by X-ray powder diffraction (XRD), transmission electron microscope (TEM), selected area electron diffraction (SAED) and scanning electron microscopy (SEM). The possible formation mechanism of hollow spheres was discussed. In addition, the CeO2 hollow microspheres modified glassy carbon electrode exhibit excellent sensing performance towards methyl orange, which provide a new application of CeO2 hollow spheres. The catalytic activity of CeO2 hollow spheres on the thermal decomposition of ammonium perchlorate (AP) also was investigated by TGA. The catalytic performance of CeO2 hollow spheres is superior to that of commercial CeO2 powder.  相似文献   

16.
The heat capacity and the enthalpy increments of strontium niobate Sr2Nb2O7 and calcium niobate Ca2Nb2O7 were measured by the relaxation time method (2–300 K), DSC (260–360 K) and drop calorimetry (720–1370 K). Temperature dependencies of the molar heat capacity in the form Cpm = 248.0 + 0.04350T − 3.948 × 106/T2 J K−1 mol−1 for Sr2Nb2O7 and Cpm = 257.2 + 0.03621T − 4.434 × 106/T2 J K−1 mol−1 for Ca2Nb2O7 were derived by the least-square method from the experimental data. The molar entropies at 298.15 K, Sm°(298.15 K) = 238.5 ± 1.3 J K−1 mol−1 for Sr2Nb2O7 and Sm°(298.15 K) = 212.4 ± 1.2 J K−1 mol−1 for Ca2Nb2O7, were evaluated from the low-temperature heat capacity measurements.  相似文献   

17.
Thermal and mechanical properties of polylactide (PLA) composites with different grades of calcium carbonate, 40 nm and 90 nm nanoparticles, and also with submicron particles, unmodified and modified with calcium stearate or stearic acid, obtained by melt mixing, were compared. Films with amorphous and crystalline matrices were prepared and examined.Tg of PLA in the composites remained unaffected whereas its cold crystallization was enhanced by the fillers and predominantly depended on filler content. Filling decreased thermal stability of the materials but their 5% weight loss temperatures well exceeded 250 °C, evidencing stability in the temperature range of PLA processing. The amorphous nanocomposites with modified nanoparticles exhibited improved drawability and toughness without a significant decrease of tensile strength; nearly two-fold increase of the elongation at break and tensile toughness was achieved at 5 wt% content of the modified nanofiller. Lack of surface modification of the filler, larger grain size with an average of 0.9 μm, and matrix crystallinity had a detrimental effect on the drawability. However, the presence of nanofillers and crystallinity improved tensile modulus of the materials by up to 15% compared to neat amorphous PLA.  相似文献   

18.
 The hydrolysis of SbCl3 in hydrochloric acid solution (2.0 mol dm-3 HCl) at 0 °C yields an amor-phous product consisting of uniform spherical particles (d∼0.5 μm), which on continuous aging at the same temperature transform to larger crystals, indicated by XRD to be Sb4O5Cl2. In contrast, in the same solution kept at 25 °C crystalline particles of the same composition form directly after an induction period and then grow with time. The final products, obtained at 0 °C and 25 °C consist of aggregated subunits. These powders on calcination in nitrogen are converted to Sb2O3 and in air to Sb2O4. Received: 23 June 1997 Accepted: 1 July 1997  相似文献   

19.
Nanosized TiO2 particles were prepared by the hydrothermal method from the amorphous powders which were precipitated in an aqueous peroxotitanate solution. The physical properties of the nanosized TiO2 particles prepared were investigated. We also examined the activity of TiO2 particles as a photocatalyst on the decomposition of orange II. The titania sol can be successfully crystallized to the anatase phase through hydrothermal aging at temperatures higher than 160°C. The particle size increases from 18 to 26 nm as the synthesis temperature increases from 140 to 200°C. Titania particles prepared at 180°C show the highest activity, and titania particles calcined at 400°C show also the highest activity on the photocatalytic decomposition of orange II.  相似文献   

20.
A sol–gel entrapped 1:3 mixture of [Rh(cod)Cl]2 and Na[HRu3(CO)11] catalyzes the hydrogenation of various unsaturated substrates by two distinguishable mechanisms. Under 13.8 bar H2 and 20 °C methylated arenes react rapidly to give cycloalkane derivatives. XRD and TEM studies showed that under these conditions the hydrogenation proceeds without the generation of free metal particles. The hydrogenation of non-methylated arenes, as well as that of alkenes and alkynes, require a temperature of 80–120 °C at which the entrapped complexes form metallic nano-particles of 3–5 nm. Chloroarenes are also hydrodechlorinated at 120 °C, but require a hydrogen pressure of ≥25 bar. At both temperature ranges the catalysts are reusable at least four times. The high efficiency of the hydrogenation process at 20 °C is rationalized by a synergistic effect between the two different metal atoms of the combined catalyst. This may be related to a remote control model through a hydrogen spillover mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号