首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The present study investigates the effect of free radical formation due to mobile phone exposure and effect on fertility pattern in 70-day-old male Wistar rats (sham exposed and exposed). Exposure took place in Plexiglas cages for 2 h a day for 35 days to mobile phone frequency. The specific absorption rate was estimated to be 0.9 W/kg. An analysis of antioxidant enzymes glutathione peroxidase (P < 0.001) and superoxide dismutase (P < 0.007) showed a decrease, while an increase in catalase (P < 0.005) was observed. Malondialdehyde (P < 0.003) showed an increase and histone kinase (P = 0.006) showed a significant decrease in the exposed group. Micronuclei also show a significant decrease (P < 0.002) in the exposed group. A significant change in sperm cell cycle of G0–G1 (P = 0.042) and G2/M (P = 0.022) were recorded. Generation of free radicals was recorded to be significantly increased (P = 0.035). Our findings on antioxidant, malondialdehyde, histone kinase, micronuclei, and sperm cell cycle are clear indications of an infertility pattern, initiated due to an overproduction of reactive oxygen species. It is concluded that radiofrequency electromagnetic wave from commercially available cell phones might affect the fertilizing potential of spermatozoa.  相似文献   

2.
Fifty-gigahertz Microwave Exposure Effect of Radiations on Rat Brain   总被引:1,自引:0,他引:1  
The object of this study is to investigate the effects of 50-GHz microwave radiation on the brain of Wistar rats. Male rats of the Wistar strain were used in the study. Animals of 60-day age were divided into two groups—group 1, sham-exposed, and group 2, experimental (microwave-exposed). The rats were housed in a temperature-controlled room (25 °C) with constant humidity (40–50%) and received food and water ad libitum. During exposure, rats were placed in Plexiglas cages with drilled ventilation holes and kept in an anechoic chamber. The animals were exposed for 2 h a day for 45 days continuously at a power level of 0.86 μW/cm2 with nominal specific absorption rate 8.0 × 10−4 w/kg. After the exposure period, the rats were killed and homogenized, and protein kinase C (PKC), DNA double-strand break, and antioxidant enzyme activity [superoxides dismutase (SOD), catalase, and glutathione peroxidase (GPx)] were estimated in the whole brain. Result shows that the chronic exposure to these radiations causes DNA double-strand break (head and tail length, intensity and tail migration) and a significant decrease in GPx and SOD activity (p = <0.05) in brain cells, whereas catalase activity shows significant increase in the exposed group of brain samples as compared with control (p = <0.001). In addition to these, PKC decreased significantly in whole brain and hippocampus (p < 0.05). All data are expressed as mean ± standard deviation. We conclude that these radiations can have a significant effect on the whole brain.  相似文献   

3.
The study aims to investigate the effect of 2.45 GHz microwave radiation on Wistar rats. Rats of 35 days old with 130 ± 10 g body weight were selected for this study. Animals were divided into two groups: sham exposed and experimental (six animals each). Animals were exposed for 2 h a day for 45 days at 2.45 GHz frequency (power density, 0.21 mW/cm2). The whole body specific absorption rate was estimated to be 0.14 W/kg. Exposure took place in a ventilated plexiglas cage and kept in an anechoic chamber under a horn antenna. After completion of the exposure period, rats were killed, and pineal gland and whole brain tissues were isolated for the estimation of melatonin, creatine kinase, caspase 3, and calcium ion concentration. Experiments were performed in a blind manner and repeated. A significant decrease (P < 0.05) was recorded in the level of pineal melatonin of exposed group as compared with sham exposed. A significant increase (P < 0.05) in creatine kinase, caspase 3, and calcium ion concentration was observed in whole brain of exposed group of animals as compared to sham exposed. One-way analysis of variance method was adopted for statistical analysis. The study concludes that a reduction in melatonin or an increase in caspase-3, creatine kinase, and calcium ion may cause significant damage in brain due to chronic exposure of these radiations. These biomarkers clearly indicate possible health implications of such exposures.  相似文献   

4.
Monomeric extracellular endoglucanase (25 kDa) of transgenic koji (Aspergillus oryzae cmc-1) produced under submerged growth condition (7.5 U mg−1 protein) was purified to homogeneity level by ammonium sulfate precipitation and various column chromatography on fast protein liquid chromatography system. Activation energy for carboxymethylcellulose (CMC) hydrolysis was 3.32 kJ mol−1 at optimum temperature (55 °C), and its temperature quotient (Q 10) was 1.0. The enzyme was stable over a pH range of 4.1–5.3 and gave maximum activity at pH 4.4. V max for CMC hydrolysis was 854 U mg−1 protein and K m was 20 mg CMC ml−1. The turnover (k cat) was 356 s−1. The pK a1 and pK a2 of ionisable groups of active site controlling V max were 3.9 and 6.25, respectively. Thermodynamic parameters for CMC hydrolysis were as follows: ΔH* = 0.59 kJ mol−1, ΔG* = 64.57 kJ mol−1 and ΔS* = −195.05 J mol−1 K−1, respectively. Activation energy for irreversible inactivation ‘E a(d)’ of the endoglucanase was 378 kJ mol−1, whereas enthalpy (ΔH*), Gibbs free energy (ΔG*) and entropy (ΔS*) of activation at 44 °C were 375.36 kJ mol−1, 111.36 kJ mol−1 and 833.06 J mol−1 K−1, respectively.  相似文献   

5.
Detection of Cry1Ab toxin in the leaves of MON 810 transgenic maize   总被引:1,自引:0,他引:1  
The distribution of Cry1Ab toxin was detected in the leaves of genetically modified maize of genetic event MON 810 by enzyme-linked immunosorbent assay. Cry1Ab toxin contents in the leaves at reproductive (milk, R3) phenological stage were measured to be between 3,878 and 11,148 ng Cry1Ab toxin/g fresh weight. Toxin content was significantly lesser (significant difference (SD) = 1,823 ng Cry1Ab toxin/g fresh leaf weight, p < 0.01) in leaves at the lowest leaf level, than at higher leaf levels, probably due to partial leaf necrotisation. A substantial (up to 22%) plant-to-plant variation in Cry1Ab contents in leaves was observed. When studying toxin distribution within the cross and longitudinal sections of single leaves, lesser variability was detected diagonally, with approximately 20% higher toxin concentrations at or near the leaf vein. More significant variability (SD = 2,220 ng Cry1Ab toxin/g fresh leaf weight, p < 0.01) was seen lengthwise along the leaf, starting at 1,892 ng Cry1Ab toxin/g fresh weight at the sheath and rising to maximum concentration at the middle of the lamella. Cry1Ab toxin content may suffer significant (SD = 2,230 ng Cry1Ab toxin/g fresh leaf weight, p < 0.01) decreases in the leaf due to necrotisation. The results indicate that the longitudinal dimension of the leaf has more significance for sampling purposes than the diagonal position.  相似文献   

6.
Metabolomics is a comprehensive method for metabolite assessment that involves measuring the overall metabolic signature of biological samples. We used this approach to investigate biochemical changes due to acute and chronic physical exercise. Twenty-two women using identical oral contraceptives were segregated into an untrained (n = 10) or trained (n = 12) group depending on their physical training background. The subjects performed two exercises in a randomized order: a prolonged exercise test (75% of their \mathop V· \textO2   max \mathop V\limits^\cdot {{\text{O}}_{2\,\;\max }} until exhaustion) and a short-term, intensive exercise test (short-term, intensive exercise anaerobic test). Urine specimens were collected before and 30 min after each test. The samples were analyzed by 1H NMR spectroscopy, and multivariate statistical techniques were utilized to process the data. Distinguishing characteristics were observed only in the urine profiles of specimens collected before vs. 30 min after the short-term, intensive exercise test. The metabolites responsible for such changes were creatinine, lactate, pyruvate, alanine, β-hydroxybutyrate, acetate, and hypoxanthine. In both groups, the excretion of lactate, pyruvate, alanine, β-hydroxybutyrate, and hypoxanthine increased similarly after the completion of the short-term, intensive exercise test (p < 0.03). However, acetate excretion increased to a lesser extent in trained than in untrained subjects (p < 0.05). In conclusion, metabolomics is a promising tool in order to gain insight into physiological status and to clarify the changes induced by short-term, intense physical exercise.  相似文献   

7.
A doubly hydrophilic triblock copolymer poly(acrylic acid)-b-poly(ethylene glycol)-b-poly(acrylic acid) (PAA-b-PEO-b-PAA) with M w/M n = 1.15 was synthesized by atom transfer radical polymerization of t-butyl acrylate (tBA), followed by acidolysis of the PtBA blocks. The pH-sensitive micellization of PAA-b-PEO-b-PAA in acidic solution was investigated by potentiometric titration, fluorescence spectrum, dynamic light scattering and zeta potential. The pK a was 6.6 and 6.0 in deionized water and in 0.1 mol/L NaCl solution, respectively. The copolymer formed micelles composed of a weakly hydrophobic core of complexed PAA and PEO and a hydrophilic PEO shell in 1 mg/mL solution at pH < 5.5 due to hydrogen bonding. The critical micelle concentration was 0.168 mg/mL at pH 2.0. At pH < 4.5, steady and narrow distributed micelles were formed. Increasing pH to 5.0, unsteady and broad distributed micelles were observed. At pH > 5.5, the micelle was destroyed owing to the ionization of the PAA blocks.  相似文献   

8.
A 66-kDa thermostable family 1 Glycosyl Hydrolase (GH1) enzyme with β-glucosidase and β-galactosidase activities was purified to homogeneity from the seeds of Putranjiva roxburghii belonging to Euphorbiaceae family. N-terminal and partial internal amino acid sequences showed significant resemblance to plant GH1 enzymes. Kinetic studies showed that enzyme hydrolyzed p-nitrophenyl β-d-glucopyranoside (pNP-Glc) with higher efficiency (K cat/K m = 2.27 × 104 M−1 s−1) as compared to p-nitrophenyl β-d-galactopyranoside (pNP-Gal; K cat/K m = 1.15 × 104 M−1 s−1). The optimum pH for β-galactosidase activity was 4.8 and 4.4 in citrate phosphate and acetate buffers respectively, while for β-glucosidase it was 4.6 in both buffers. The activation energy was found to be 10.6 kcal/mol in the temperature range 30–65 °C. The enzyme showed maximum activity at 65 °C with half life of ~40 min and first-order rate constant of 0.0172 min−1. Far-UV CD spectra of enzyme exhibited α, β pattern at room temperature at pH 8.0. This thermostable enzyme with dual specificity and higher catalytic efficiency can be utilized for different commercial applications.  相似文献   

9.
The pH dependence of an anionic surfactant, sodium N-dodecanoylsarcosinate (SLAS), has been studied by measuring interfacial tension, fluorescence, dynamic light scattering, etc., in aqueous solutions with phosphate and borate buffers. The interfacial tension (γ) of SLAS decreases remarkably with a pH decrease and is constant at pH > 7.3. The observed values for the critical micelle concentration (cmc) and the surfactant concentration at which its γ value is reduced by 20 mN/m from that of pure water (C 20) decrease with a pH decrease, while those also become constant at pH > 6.5 and >7.3, respectively. On the other hand, the interfacial excess of SLAS increases at pH < 7.3. These interfacial behaviors have been further investigated by the addition of Tl+ which replaces Na+ of SLAS. The observed γ values of LAS with the different counter cations are in the order of H+ < Tl+ < Na+. In order to reveal aggregation properties of SLAS, the aggregation number (N agg), the micropolarity, the hydrodynamic radius (R h) of micelle, and the fluorescence anisotropy of Rhodamine B (r) have been evaluated at various pHs. The N agg value shows a decreasing tendency with a pH increase. The I 1/I 3 ratio and the R h values do not strongly depend on pH. The r value decreases until pH 7 and remains constant at pH > 7.0. These interfacial and micelle properties have been discussed in detail considering the electrostatic interaction and the molecular structures of the hydrophilic headgroup.  相似文献   

10.
Depression is a common disorder with physical and psychological manifestations often associated with low serotonin. Since noninvasive diagnostic tools for depression are sparse, we evaluated the clinical utility of a novel ELISA for the measurement of serotonin in urine from depressed subjects and from subjects under antidepressant therapy. We developed a competitive ELISA for direct measurement of serotonin in derivatized urine samples. Assay performance was evaluated and applied to clinical samples. The analytical range of the assay was from 6.7 to 425 μg serotonin/g creatinine (Cr). The limit of quantification was 4.7 μg/g Cr. The average recovery for spiked urine samples was 104.4%. Average intra-assay variation was 4.4%, and inter-assay variation was <20%. The serotonin analysis was very specific. No significant interferences were observed for 44 structurally and nonstructurally related urinary substances. Very good correlation was observed between urinary serotonin levels measured by ELISA and liquid chromatography tandem mass spectrometry (LC-MS/MS; ELISA = 1.16 × LC-MS/MS − 53.8; r = 0.965; mean % bias = 11%; n = 18). Serotonin was stable in acidified urine for 30 days at room temperature and at −20 °C. The established reference range for serotonin was 54–366 μg/g Cr (n = 64). Serotonin levels detected in depressed patients (87.53 ± 4.89 μg/g Cr; n = 60) were significantly lower (p < 0.001) than in nondepressed subjects (153.38 ± 7.99 μg/g Cr). Urinary excretion of serotonin in depressed individuals significantly increased after antidepressant treatment by 5-hydroxy-tryptophane and/or selective serotonin re-uptake inhibitor (p < 0.01). The present ELISA provides a convenient and robust method for monitoring urinary serotonin. It is suitable to monitor serotonin imbalances and may be particularly helpful in evaluating antidepressant therapies.  相似文献   

11.
In the present study, compactin production by Penicillium brevicompactum WA 2315 was optimized using solid-state fermentation. The initial one factor at a time approach resulted in improved compactin production of 905 μg gds−1 compared to initial 450 μg gds−1. Subsequently, nutritional, physiological, and biological parameters were screened using fractional factorial and Box–Behnken design. The fractional factorial design studied inoculum age, inoculum volume, pH, NaCl, NH4NO3, MgSO4, and KH2PO4. All parameters were found to be significant except pH and KH2PO4. The Box–Behnken design studied inoculum volume, inoculum age, glycerol, and NH4NO3 at three different levels. Inoculum volume (p = 0.0013) and glycerol (p = 0.0001) were significant factors with greater effect on response. The interaction effects were not significant. The validation study using model-defined conditions resulted in an improved yield of 1,250 μg gds−1 compactin. Further improvement in yield was obtained using fed batch mode of carbon supplementation. The feeding of glycerol (20% v/v) on day 3 resulted in further improved compactin yield of 1,406 μg gds−1. The present study demonstrates that agro-industrial residues can be successfully used for compactin production, and statistical experiment designs provide an easy tool to improve the process conditions for secondary metabolite production.  相似文献   

12.
The electrochemical solid phase micro-extraction of salicylic acid (SA) at graphite-epoxy-composed solid electrode surface was studied by cyclic voltammetry. SA was oxidized electrochemically in pH 12.0 aqueous solution at 0.70 V (vs. saturated calomel electrode) for 7 s. The oxidized product shows two surface-controlled reversible redox couples with two proton transferred in the pH range of 1.0∼6.0 and one proton transferred in the pH range of 10.0∼13.0 and is extracted on the electrode surface with a kinetic Boltzman function of i p = 3.473–4.499/[1 + e(t − 7.332)/6.123] (χ 2 = 0.00285 μA). The anodic peak current of the extracted specie in differential pulse voltammograms is proportional to the concentration of SA with regression equation of i p = −5.913 + 0.4843 c (R = 0.995, SD = 1.6 μA) in the range of 5.00∼200 μM. The detection limit is 5.00 μM with RSD of 1.59% at 60 μM. The method is sensitive and convenient and was applied to the detection of SA in mouse blood samples with satisfactory results.  相似文献   

13.
In this work, the potential of microwave-assisted alkali pretreatment in order to improve the rupture of the recalcitrant structures of the cashew able bagasse (CAB), lignocellulosic by-product in Brazil with no commercial value, is obtained from cashew apple process to juice production, was studied. First, biomass composition of CAB was determined, and the percentage of glucan and lignin was 20.54 ± 0.70% and 33.80 ± 1.30%, respectively. CAB content in terms of cellulose, hemicelluloses, and lignin, 19.21 ± 0.35%, 12.05 ± 0.37%, and 38.11 ± 0.08%, respectively, was also determined. Results showed that, after enzymatic hydrolysis, alkali concentration exerted influence on glucose formation, after pretreatment with 0.2 and 1.0 mo L−1 of NaOH (372 ± 12 and 355 ± 37 mg gglucan−1) when 2% (w/v) of cashew apple bagasse pretreated by microwave-assisted alkali pretreatment (CAB-M) was used. On the other hand, pretreatment time (15–30 min) and microwave power (600–900 W) exerted no significant effect on hydrolysis. On enzymatic hydrolysis step, improvement on solid percentage (16% w/v) and enzyme load (30 FPU gCAB-M−1) increased glucose concentration to 15 g L−1. The fermentation of the hydrolyzate by Saccharomyces cerevesiae resulted in ethanol concentration and productivity of 5.6 g L−1 and 1.41 g L−1 h−1, respectively.  相似文献   

14.
The natural flavonoid compounds quercetin (3,3′,4′,5,7-pentahydroxyflavone) and luteolin (3′,4′,5,7-tetrahydroxyflavone) are important bioactive compounds with antioxidative, anti-allergic, and anti-inflammatory properties. However, both are unstable when exposed to atmospheric oxygen, which causes degradation and complicates their analytical determinations. The oxidative change of these flavonoids was observed and followed by UV–visible spectrophotometry, both in aqueous and ethanolic solutions. The distribution of the degradation products in aqueous media was monitored by LC–MS and LC–DAD analysis. The amounts of oxidative reaction products increase with the exposure time. The oxidative degradation reduces the pharmacological efficiency of these antioxidants and renders analytical determination inaccurate. The oxidative changes in flavonoid test solutions can explain the inconsistent dissociation constants reported in the literature. Dissociation constants of quercetin and luteolin were determined both by alkalimetric titration and by UV–visible spectrophotometry under deaerated conditions. The values pK 1 = 5.87 ± 0.14 and pK 2 = 8.48 ± 0.09 for quercetin, and pK 1 = 5.99 ± 0.32 and pK 2 = 8.40 ± 0.42 for luteolin were found.  相似文献   

15.
Homocitrulline (HCit), an amino acid formed by the carbamylation of ε-amino groups of lysine residues, is considered a promising biomarker for monitoring diseases such as chronic renal failure and atherosclerosis. This paper describes a tandem mass spectrometric method for total, protein-bound and free HCit measurement in plasma samples. HCit was separated from other plasma components by hydrophilic interaction liquid chromatography. Detection was achieved by monitoring transitions of 190.1 > 127.1 and 190.1 > 173.1 for HCit, and 183.1 > 120.2 for d7-citrulline used as internal standard. This method allowed HCit quantification within 5.2 min and was precise (inter-assay CV < 5.85%), accurate (mean recoveries ranging from 97% to 106%), and exhibited a good linearity from 10 nmol/L to 1.6 μmol/L. Plasma samples from control and uremic mice (n = 10) were analyzed. In control mice, mean total plasma HCit concentration was 0.78 ± 0.12 μmol/mol amino acids, whereas it was increased 2.7-fold in uremic mice plasma, reaching 2.10 ± 0.50 μmol/mol amino acids (p < 0.001). In conclusion, this method exhibits good analytical performances and meets the criteria of sensitivity suitable for HCit concentration assessment in plasma samples.  相似文献   

16.
The mechanism of action of the anti-apoptotic oncogene Bcl-2 and Ca+2 regulation in ischemia–reperfusion injury is still obscure. In this present study, we investigated mitochondrial Ca+2 overloads and mechanism of action of Bcl-2. Eighteen Wistar rats were divided into sham-operated control group (I) (n = 6), ischemia and reperfusion group (II) (n = 6), and amlodipine-treated group (1 mg kg−1 body weight/daily by oral route for 7 days before inducing ischemia–reperfusion maneuver) (III) (n = 6). Rats were subjected to 1 h of hepatic ischemia followed by 3-h reperfusion. Mitochondrial Ca2+ content was determined and damage was confirmed by transmission electron microscopy. Decrease of mitochondrial Ca+2 level is related to reduction of apoptosis and cellular changes, viz. increased Bcl-2 expression followed by reduction in secondary endoplasmic reticulum, whereas ischemia/reperfusion group shows overloading Ca+2 ions and decrease in Bcl-2 expression as compared to sham-operated rats. Thus, Bcl-2-dependent reduction of Ca+2 is an important component of the anti-apoptotic program in ischemia–reperfusion injury.  相似文献   

17.
A p-duroquinone (tetramethyl-p-benzoquinone) modified carbon paste electrode (DMCPE) was employed to study the electrocatalytic reduction of nitrite in aqueous solutions using cyclic voltammetry (CV), double potential-step chronoamperometry, and differential pulse voltammetry (DPV). It has found that under an optimum condition (pH 1.00), the reduction of nitrite at the surface of DMCPE occurs at a potential of about 660 mV less negative than that of an unmodified carbon paste electrode (CPE). The catalytic rate constant, kh, based on Andrieux and Saveant theoretical model was calculated as for scan rate 10 mV s-1. Also, the apparent diffusion coefficient, D app, was found as 2.5 × 10–10 and 3.61 × 10–5 cm2 s-1 for p-duroquinone in carbon paste matrix and nitrite in aqueous buffered solution, respectively. The values for αnα were estimated to be −0.65 and −0.19 for the reduction of nitrite at the surface of DMCPE and CPE, respectively. The electrocatalytic reduction peak currents showed a linear dependence on the nitrite concentration, and a linear analytical curve was obtained in the ranges of 5.0 × 10–5 M to 8.0 × 10–3 M and 6.0 × 10–6 M to 8.0 × 10–4 M of nitrite concentration with CV and DPV methods, respectively. The detection limits (2σ) were determined as 2.5 × 10–5 M and 4.3 × 10–6 M by CV and DPV methods. This method was also applied as a simple, selective and precise method for determination of nitrite in real samples (the weak liquor from the wood and paper factory of Mazandaran province in Iran) by using a standard addition method.  相似文献   

18.
Nanocrystalline Ru1 − x Ni x O2 − y with 0.02 < x < 0.30 were prepared by a sol–gel approach at temperatures between 300 and 600 °C. XRD patterns of the prepared materials indicate a single-phase character conforming to a tetragonal syngony. All prepared materials are sufficiently stable in acid media and show activity towards oxygen evolution. The activity towards oxygen evolution reaction of the materials with constant chemical composition decreases with increasing particle size. The increasing Ni content enhances the electrocatalytic activity in a stepwise manner with abrupt changes for materials containing approximately 5% or 15% of the cationic sites substituted by Ni.  相似文献   

19.
This work describes the development and optimization of a sequential injection method to automate the determination of paraquat by square-wave voltammetry employing a hanging mercury drop electrode. Automation by sequential injection enhanced the sampling throughput, improving the sensitivity and precision of the measurements as a consequence of the highly reproducible and efficient conditions of mass transport of the analyte toward the electrode surface. For instance, 212 analyses can be made per hour if the sample/standard solution is prepared off-line and the sequential injection system is used just to inject the solution towards the flow cell. In-line sample conditioning reduces the sampling frequency to 44 h−1. Experiments were performed in 0.10 M NaCl, which was the carrier solution, using a frequency of 200 Hz, a pulse height of 25 mV, a potential step of 2 mV, and a flow rate of 100 μL s−1. For a concentration range between 0.010 and 0.25 mg L−1, the current (i p, μA) read at the potential corresponding to the peak maximum fitted the following linear equation with the paraquat concentration (mg L−1): i p = (−20.5 ± 0.3)C paraquat − (0.02 ± 0.03). The limits of detection and quantification were 2.0 and 7.0 μg L−1, respectively. The accuracy of the method was evaluated by recovery studies using spiked water samples that were also analyzed by molecular absorption spectrophotometry after reduction of paraquat with sodium dithionite in an alkaline medium. No evidence of statistically significant differences between the two methods was observed at the 95% confidence level.  相似文献   

20.
A fast and sensitive liquid chromatography–mass spectrometry method was developed for the determination of ursolic acid (UA) in rat plasma and tissues. Glycyrrhetinic acid was used as the internal standard (IS). Chromatographic separation was performed on a 3.5 μm Zorbax SB-C18 column (30 mm × 2.1 mm) with a mobile phase consisting of methanol and aqueous 10 mM ammonium acetate using gradient elution. Quantification was performed by selected ion monitoring with (m/z) 455 for UA and (m/z) 469 for the IS. The method was validated in the concentration range of 2.5 − 1470 ng mL−1 for plasma samples and 20 − 11760 ng g−1 for tissue homogenates. The intra- and inter-day assay of precision in plasma and tissues ranged from 1.6% to 7.1% and 3.7% to 9.0%, respectively, and the intra- and inter-day assay accuracy was 84.2 − 106.9% and 82.1 − 108.1%, respectively. Recoveries in plasma and tissues ranged from 83.2% to 106.2%. The limits of detections were 0.5 ng mL−1 or 4.0 ng g−1. The recoveries for all samples were >90%, except for liver, which indicated that ursolic acid may metabolize in liver. The main pharmacokinetic parameters obtained were T max = 0.42 ± 0.11 h, C max = 1.10 ± 0.31 μg mL−1, AUC = 1.45 ± 0.21 μg h mL−1 and K a = 5.64 ± 1.89 h−1. The concentrations of UA in rat lung, spleen, liver, heart, and cerebellum were studied for the first time. This method is validated and could be applicable to the investigation of the pharmacokinetics and tissue distribution of UA in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号