首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Polyhedron》2005,24(16-17):2625-2631
4,4′-Biimidazole derivatives having alkyl-substituents at 2- and 2′-positions were synthesized as new component molecules of supramolecular assemblies based on hydrogen-bonding interaction. The crystal structure analyses of methyl and ethyl derivatives revealed intriguing three-dimensional structures constructed by hydrogen-bonded networks. Furthermore, the methyl derivative formed a six-membered cyclic motif of hydrogen-bonded network to build up a channel structure. The ethyl derivative gave the two polymorphous, anhydrate and dihydrate, depending on conditions of the crystallization. The anhydrate constructed three-dimensional hydrogen-bonded networks by direct N–H⋯N hydrogen-bondings. In the crystal structure of the dihydrate of ethyl derivative, three-dimensional hydrogen-bonding interaction through water molecules formed a channel structure.  相似文献   

2.
The anhydrate, dihydrate, and trihydrate phases of chemically pure magnesium stearate and magnesium palmitate have been prepared and characterized as to their structural characteristics. The magnesium palmitate materials were obtained as significantly larger crystals than were the magnesium stearate materials, and the crystals of the dihydrate phase of either material were found to be the most fully developed. The crystal structures of all materials were judged to be very similar to each other, differing primarily in the magnitude of the long (001) crystal spacing. Thermal analysis studies revealed that the water of hydration contained within the dihydrate phases of either magnesium stearate or magnesium palmitate was more tightly bound than was the water of hydration within the corresponding trihydrate phases. These findings provide further support for the structural picture where the water contained in these lattice structures is present between the intermolecular planes.  相似文献   

3.
Acyclovir (ACV) has two polymorphs, anhydrate 1 and anhydrate 2, and two hydrates, 2/3 hydrate and dihydrate. The effect of polymorphic transformation of ACV on the temperature and humidity was evaluated by simultaneous XRD-DSC and vapor sorption analysis. Each crystal structure of ACV was analyzed by single crystal analysis and powder X-ray diffraction analysis. On the polymorphic and pseudomorphic transformation, anhydrate 1 did not directly transform to anhydrate 2, but transform through 2/3 hydrate and dihydrate due to relative humidity and temperature. According to the molecular packing for four crystals, there are two packing manners for purine moiety. Anhydrate 1, anhydrate 2, 2/3 hydrate and dihydrate were packed in parallel, anti parallel, mixture of parallel–anti parallel and parallel manners, respectively. Base on the packing manner of ACV, it can be seen why the phase transformation occurs with readily or with difficulty. The thermodynamic relation of anhydrate form 1 and form 2 was evaluated by DSC and microcalorimetry. It was found that these two forms are monotropic forms, with anhydrate form I is stable form and it transform to a new form 3 at 443.2 K.  相似文献   

4.
Complementary results from 13C intermolecular nuclear Overhauser effects (NOE), 1H-13C heteronuclear Overhauser spectroscopy (HOSEY) and 1H-NMR diffusion measurements were used for probing the structure of the first solvation shell of uridine in water. It is demonstrated that a cyclic dihydrate is formed. The two water molecules produce two hydrogen bonds with the two oxygen atoms from the pyrimidine ring and accept only one hydrogen bond from the amide proton. The dihydrate has only a short lifetime as compared with the rotational correlation time of the free nucleoside. The chemical exchange constant of the amide proton with water is then estimated by diffusion experiments. The results are consistent with previous data obtained for uracil in water and provide interesting information about water accessibility in nucleic acid bases.  相似文献   

5.
Single crystal XRD is used to study the crystals of salts of indole alkaloid norfluorocurarine: hydrochloride recrystallized from absolute alcohol, dihydrate hydrochloride recrystallized from water, methochloride monohydrate recrystallized from water, solvate form of methochloride obtained from ethanol, and methobromide monohydrate. Intra- and intermolecular hydrogen bonds are analyzed in these crystals. The crystal structures of norfluorocurarine methochloride and methobromide monohydrates are isomorphic. In norfluorocurarine salts, the orientation of the carbonyl group is determined by the intramolecular C19=O…H-N1 hydrogen bond that is absent in the solvate form with ethanol.  相似文献   

6.
Dehydration of trehalose dihydrate implemented by slow heating (1 K min−1), has been monitored by Raman microspectroscopy from 25 to 110°C directly on single crystals. Between 90 and 120°C, gas initially trapped in irregular macroscopic defects, reorganizes to form spherical vacuoles. The Raman analysis of these vacuoles highlights that the areas in vicinity of the defects are the first affected by the dehydration mechanisms. Indeed, the progressive amorphization of the crystal starts around these defects.  相似文献   

7.
The structural properties resulting from the reciprocal influence between water and three well-known homologous disaccharides, namely, trehalose, maltose, and sucrose, in aqueous solutions have been investigated in the 4-66 wt % concentration range by means of molecular dynamics computer simulations. Hydration numbers clearly show that trehalose binds to a larger number of water molecules than do maltose or sucrose, thus affecting the water structure to a deeper extent. Two-dimensional radial distribution functions of trehalose solutions definitely reveal that water is preferentially localized at the hydration sites found in the trehalose dihydrate crystal, this tendency being enhanced when increasing trehalose concentration. Over a rather wide concentration range (4-49 wt %), the fluctuations of the radius of gyration and of the glycosidic dihedral angles of trehalose indicate a higher flexibility with respect to maltose and sucrose. At sugar concentrations between 33 and 66 wt %, the mean sugar cluster size and the number of sugar-sugar hydrogen bonds formed within sugar clusters reveal that trehalose is able to form larger clusters than sucrose but smaller than maltose. These features suggest that trehalose-water mixtures would be more homogeneous than the two others, thus reducing both desiccation stresses and ice formation.  相似文献   

8.
Two commercial magnesium stearate powders in two well-characterised structural states are investigated using DSC and coupled TGA-DTA under dry nitrogen flow. They consist of either a mixture of crystalline hydrates or a poorly crystallised so-called anhydrate. Following the degassing of unbound water, 1 or 3 weight-loss peaks are observed below about 100 °C, each associated with one heat loss peak at the same temperature. The present results and a review of graphical data from literature show that the so-called anhydrate always contains a significant amount of water. At the beginning of the dehydration process, the heat loss is the same as the standard heat of vaporisation of water and then gradually departs from it by positive values. The idea according to which the mixture of dihydrate and trihydrate loses water to form the anhydrate cannot be quantitatively reconciled with the present and other gravimetric results.  相似文献   

9.
Diatrizoic acid (DTA), a clinically used X‐ray contrast agent, crystallises in two hydrated, three anhydrous and nine solvated solid forms, all of which have been characterised by X‐ray crystallography. Single‐crystal neutron structures of DTA dihydrate and monosodium DTA tetrahydrate have been determined. All of the solid‐state structures have been analysed using partial atomic charges and hardness algorithm (PACHA) calculations. Even though in general all DTA crystal forms reveal similar intermolecular interactions, the overall crystal packing differs considerably from form to form. The water of the dihydrate is encapsulated between a pair of host molecules, which calculations reveal to be an extraordinarily stable motif. DTA presents functionalities that enable hydrogen and halogen bonding, and whilst an extended hydrogen‐bonding network is realised in all crystal forms, halogen bonding is not present in the hydrated crystal forms. This is due to the formation of a hydrogen‐bonding network based on individual enclosed water squares, which is not amenable to the concomitant formation of halogen bonds. The main interaction in the solvates involves the carboxylic acid, which corroborates the hypothesis that this strong interaction is the last one to be broken during the crystal desolvation and nucleation process.  相似文献   

10.
In this study, we use molecular dynamics simulations to investigate and compare the interactions of DPPC bilayers with and without saccharides (glucose or trehalose) under dehydrated conditions. Results from the simulations indicate that unilamellar bilayers lose their structural integrity under dehydrated conditions in the absence of saccharides; however, in the presence of either glucose or trehalose, the bilayers maintain their stability. Hydrogen bond analysis shows that the saccharide molecules displace a significant amount of water surrounding the lipid headgroups. At the same time, the additional hydrogen bonds formed between water and saccharide molecules help to maintain a hydration layer on the lipid bilayer interface. On the basis of the hydrogen bond distributions, trehalose forms more hydrogen bonds with the lipids than glucose, and it is less likely to interact with neighboring saccharide molecules. These results suggest that the interaction between the saccharide and lipid molecules through hydrogen bonds is an essential component of the mechanism for the stabilization of lipid bilayers.  相似文献   

11.
Single crystal X-ray diffraction has been applied to determine the structure of salts — formate and hydrochloride of N-(benzylimidazolyl-2)-O-methylcarbamate (BMC). The crystal structure of BMC formate is built by a molecule of a base and two formic acid molecules, one of them protonating a BMC molecule. Hydrogen bonds in the crystal form a weakly bound one-dimensional ribbon. BMC hydrochloride crystallizes as dihydrate. Two molecules of crystallization water and Cl ion make a robust H-bonded two-dimensional layer. BMC salts are formed through the protonation of N9 atom.  相似文献   

12.
Energy surfaces for the relative orientations of the pyranosyl rings of α,α-, α,β-, and β,β-trehalose and analogues were generated with MM3. Sixteen starting conformations of the rotatable side groups of α,β-trehalose were considered, while only 10 conformations were needed for α,α- and β,β-trehalose because of molecular symmetry. Energies were calculated at 20° increments of the two torsional angles of the glycosidic linkage, but otherwise the molecules were fully relaxed. The structure at the overall minimum for α,α-trehalose agrees well with that found in crystal structures, and also agrees with interpretations of NMR and optical rotation data. The energy surfaces for the three trehaloses differ greatly from each other, but are each similar to those for the corresponding three 2-(6-methyltetrahydropyran-2-yloxy)6-methyltetrahydropyrans. This suggests that linkage type (axial or equatorial) is more important than exocyclic substituents in determining trehalose conformations. A comparison with surfaces from the corresponding 5a-carba trehalose analogues illustrates that the exo-anomeric effect is important in determining disaccharide conformation.  相似文献   

13.
Although the effectiveness of trehalose as cryoprotectant is proved, the underlying mechanisms have been so far unclear and the formulated hypothesis often contrasting. Experimental findings indicate that the bioprotection causes lie on the ‘solvent’, i.e. on the peculiar interaction mechanisms of trehalose with water, independently on the biostructure nature.  相似文献   

14.
The interactions of the cryoprotective agent trehalose with a lipid membrane made of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine at 323 K were studied by means of molecular dynamics simulations. It was observed that trehalose binds to the phospholipid headgroups with its main axis parallel to the membrane normal. Trehalose establishes hydrogen bonds with the carbonyl and phosphate groups and replaces water molecules from the lipid headgroup. Notably, the number of hydrogen bonds (HBs) that the membrane made with its environment was conserved after trehalose binding. The HBs between lipid and trehalose have a longer lifetime than those established between lipid and water. The binding of the sugar does not produce changes either in the lipid area or in the lipid order parameter. The effect of trehalose on the dipole potential is in agreement with experimental results. The contribution of the different components to the membrane dipole potential was analyzed. It was observed that the binding of trehalose produces changes in the different components and the sugar itself contributes to the surface potential due to the polarization of its hydroxyl in the interface.  相似文献   

15.
There has been a lot of interest in quantification of the amorphous content of materials, especially when the amorphous content is a small percentage of the total mass. Whilst there has been success in studies on single materials, there has been little work showing how quantification of the amorphous content of one material can be undertaken in the presence of another. In this work isothermal microcalorimetry was used to measure the content of amorphous trehalose following mixing with crystalline lactose. Gravimetric water sorption studies revealed that trehalose did not form a complete dihydrate when exposed to 75% RH, presumably due to the rapid crystallisation of the outer regions of the particles. At 53% RH, the gravimetric studies showed dihydrate formation. The calorimetry data revealed that the crystallisation response was directly related to the mass of amorphous material in the mixture and was not affected by the mass of non-crystallising sample. It was shown that as long as there was a minimum mass of amorphous material (in this case 4 mg), it was possible to measure a crystallisation response with sufficient accuracy to allow quantification. Lower masses of amorphous content allowed detection, but less accurate quantification, as the response was superimposed on the initial calorimetric heat flow response. It was also found that the response at 53% RH in the TAM was less accurate due to the low peak height and long duration (compared to that seen at 75% RH). It can be concluded that the TAM method is well suited to both detection and quantification of amorphous content when there is one amorphous sample mixed with another (and thus presumably more than one) non-crystallising material.  相似文献   

16.
The molecular and crystal structure of single-crystalline mesitylenesulfonic acid dihydrate (1) was determined by X-ray diffraction and IR spectroscopy. According to X-ray diffraction data, water molecules in the crystal structure form H5O2 + cations stabilized by an intracationic hydrogen bond with a length of 2.45(1) Å. The formation of the asymmetric H5O2 + cation was confirmed by IR spectroscopy. The crystallographic nonequivalence of the water molecules results in a shift of the bridging proton from the midpoint of the strong hydrogen bond in the cation toward one of the water molecules. The proton conductivity of compound 1 was measured by impedance spectroscopy. Dihydrate 1 is completely dehydrated upon prolonged storage in a dry argon glove box and undergoes the transition to the dielectric state. Compound 1 is stable in the humidity range of 32–66 rel.%. The conductivity of dihydrate 1 is (2.4±0.3) · 10?5 Ohm?1 cm?1 at 298 K, E a = 0.21±0.01 eV.  相似文献   

17.
The dynamics of trehalose molecules in aqueous solutions confined in silica gel have been studied by quasielastic neutron scattering (QENS). Small-angle neutron scattering measurements confirmed the absence of both sugar clustering and matrix deformation of the gels, indicating that the results obtained are representative of homogeneous trehalose solutions confined in a uniform matrix. The pore size in the gel is estimated to be 18 nm, comparable to the distances in cell membranes. For the QENS measurements, the gel was prepared from D2O in order to accentuate the scattering from the trehalose. Values for the translational diffusion constant and effective jump distance were derived from model fits to the scattering function. Comparison with QENS and NMR results in the literature for bulk trehalose shows that confinement on a length scale of 18 nm has no significant effect on the translational diffusion of trehalose molecules.  相似文献   

18.
Introduction4-Mercaptopyridine(4MPY)has been always em-ployed as a model molecule and a probe molecule forRaman spectra in many studies because of its specialstructure with two active groups and its excellent signalin a Raman spectrum.Therefore,4MPY has b…  相似文献   

19.
Thermal behavior of poly(ethylene imine) [PEI] has been studied using simultaneous WAXD/DSC measurement system. PEI exhibits water-induced and thermally-induced phase transitions among four kinds of crystalline hydrates: anhydrate (EI/water = 1/0), hemihydrate (1/0.5), sesquihydrate (1/1.5), and dihydrate (1/2). The chain conformation changes from a double helix in the anhydrate to a planar zigzag form in the three hydrates. The anhydrate melts at 60 °C while the hydrates melt differently in the temperature region of 70–110 °C. By means of the simultaneous WAXD/DSC measurements, complex DSC thermograms of PEI hydrates were characterized on the basis of X-ray diffractions obtained concurrently.  相似文献   

20.
The characterizations of the anhydrate (A-form), monohydrate (B1-form), and dihydrate (B2-form) of CS-834 were investigated by powder X-ray diffraction, differential scanning calorimetry (DSC), thermogravimetry-differential thermal analysis (TG-DTA), infrared spectroscopy, and Karl Fischer moisture titration. The typical DSC curve of the B2-form showed five endothermic peaks at 35.0, 46.4, 56.2, 99.2, and 190.4 degrees C and an exothermic peak at 123.4 degrees C. In TG-DTA analysis, the three peaks at 35.0, 46.4, and 56.2 degrees C had a total weight loss of 7.3%, corresponding to the release of two water molecules. From morphological observation under thermomicroscopy, the endothermic peak at 99.2 degrees C was attributed to the melting of the dehydrous crystals (B0-form) and the exothermic peak at 123.4 degrees C to the recrystallization to the A-form crystals. The endothermic peak at 190.4 degrees C was due to the melting of the A-form crystals. After incubation for 6.0 h at 35, 50, 60, and 80 degrees C, the powder X-ray diffraction patterns of the B2-form indicated that it was converted into the A-form via the B1-form and B0-form. Thus CS-834 exists in homologous hydrous crystal forms in multiple-phase transformations with the dehydration of two water molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号