首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The core-shell gold nanoparticles and copolymer of N-isopropylacrylamide (NIPAM) and N,N'-methylenebisacrylamide (MBAA) hybrids (Au@copolymer) were fabricated through surface-initiated atom-transfer radical polymerization (ATRP) on the surface of gold nanoparticles in 2-propanol/water mixed solvents. The surface of citrate-stabilized gold nanoparticles was first modified by a disulfide initiator for ATRP. The slight cross-linking polymerization between NIPAM and MBAA occurred on the gold surface and resulted in the formation of core-shell Au@copolymer nanostructures that were characterized by TEM, and FTIR and UV-visible spectroscopy. Such synthesized Au@copolymer hybrids possess clearly thermosensitive properties and exhibit "inspire" and "expire" water behavior in response to temperature changes in aqueous solution. Because of this property, we enable to trap and encapsulate smaller nanoparticles by using the free space of the copolymer-network scaffold anchored at the gold surface.  相似文献   

2.
In this work, we describe a new methodology for the preparation of monodisperse and thermosensitive microgels with magnetic core. In order to produce such a material, hydrophobic magnetic Fe(3)O(4) nanoparticles were prepared by two methods: thermal decomposition and coprecipitation. The surface of these nanoparticles was modified by addition of 3-butenoic acid, and after that these nanoparticles were dispersed in water and submitted to free radical polymerization at 70 °C in the presence of N-isopropylacrylamide (NIPAM) and bisacrylamide. The result of this reaction was monodisperse microgels with a magnetic core. By varying the amount of 3-butenoic acid, it was possible to obtain hybrid microgels with different magnetic core sizes and different architectures.  相似文献   

3.
Thermosensitive PNIPAM microcontainers were prepared by using silica particles as template. Silica particles were prepared by the St?ber method and surface modified with linear P(NIPAM-co-MPS) chains. PNIPAM shell was then fabricated on the P(NIPAM-co-MPS)-modified silica particles through precipitation polymerization of NIPAM and MBA. Finally, PNIPAM microcontainers were obtained by removing the silica cores with NaOH. The materials were characterized by TEM, FTIR, GPC, and DLS. The PNIPAM microcontainers exhibit good thermosensitivity. The method to fabricate thermosensitive PNIPAM shell can be generalized to a versatile method for preparing PNIPAM shell on particles with silica surface, which includes surface modification with P(NIPAM-co-MPS) and precipitation polymerization of NIPAM and MBA using the modified particles as seed. Through this method, PNIPAM shell was successfully fabricated on iron oxide/silica nanostructures with a wormlike shape and relatively large size, which demonstrates the versatility of the method.  相似文献   

4.
A novel magnetic chelator with high adsorption capacity of protein by immobilized metal affinity adsorption was prepared by cerium (IV) initiated graft polymerization of tentacle-type polymer chains with iminodiacetic acid (IDA) chelating group on magnetic particles with hydroxyl groups. The micron-sized magnetic poly(vinyl acetate-divinylbenzene) (PVAc-DVB) particles were prepared by a modified suspension polymerization in the presence of oleic acid-coated magnetite nanoparticles and subsequently modified by ester exchange reaction to introduce functional hydroxyl groups. Bovine hemoglobin (BHb) was selected as a model protein to investigate the adsorption capacity of these magnetic particles. The magnetic particles were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), superconducting quantum interference device (SQUID) magnetometry, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and X-ray diffraction (XRD). The results showed that the magnetic particles had an average size of 5 microm and superparamagnetism with saturation magnetization of 20.0 emu/g at room temperature. The protein adsorption indicated that the graft polymerization of tentacle type polymer chains on the magnetic particles could produce magnetic adsorbents with high adsorption capacity (1428.21 mg/g) and low nonspecific adsorption of protein. The magnetic particles with grafted tentacle polymer chains have potential application in large-scale affinity separation of proteins.  相似文献   

5.
Adsorption of globular protein, lysozyme, on thermosensitive poly(N-isopropylacrylamide) coated nanomagnetic particles was studied at different temperatures and pHs. It was observed that a maximum amount of lysozyme was adsorbed at a temperature above the lower critical solution temperature (LCST) (32 degrees C ) of the polymer and at the isoelectric point (pI=11) of lysozyme. Desorption was carried out using either NaH2PO4 (pH 4) or NaSCN (pH 6) as the desorbing agents. Conformational changes in lysozyme on desorption from nanomagnetic particles was studied by circular dichroism and intrinsic fluorescence spectroscopy. Lysozyme desorbed by NaH2PO4 showed very little conformational changes while lysozyme desorbed by NaSCN showed significant conformational changes, and 87% enzymatic activity was retained in the desorbed enzyme for desorption by NaH2PO4.  相似文献   

6.
Exposure to the high energy electron beam of a TEM changes the morphology of amorphous Fe oxide nanoparticles from solid spheres to hollow shells. Amorphous Fe oxide nanoparticles prepared via high-temperature methods using hexadecylamine and trioctylphosphine oxide surfactants were compared to crystalline gamma-Fe2O3 particles of similar size. Both sets of particles are fully characterized via SQUID magnetometry, X-ray powder diffraction, BET surface analysis, EPR spectroscopy, high-resolution transmission electron microscopy (TEM), and electron energy loss spectroscopy (EELS). Time-resolved TEM images reveal that the amorphous Fe oxide particles evolve from solid spheres into hollow shells in <2 min, whereas crystalline gamma-Fe2O3 are unaffected by the electron beam. The resulting nanocrystalline Fe oxide shells bear striking resemblance to core-shell nanocrystals, but are a result of a morphology change attributed to restructuring of particle voids and defects induced by quasi-melting in the TEM. These results thus imply that caution is necessary when using TEM to analyze nanoparticle core-shell and heterostructured nanoparticles.  相似文献   

7.
Zirconia nanoparticles were encapsulated by polyethylene via a polymerization compounding method using a Ziegler-Natta catalyst. The chemical reaction was carried out in an organic solvent under moderate pressure of ethylene monomer. Transmission electron microscopy (TEM) indicated the presence of a thin layer of polymer, about 6 nm, uniformly applied around the particles. However, the thickness of coating layer can be controlled as a function of time and operating conditions of the process. The morphology study using scanning electron microscopy (SEM) as well as TEM revealed that although the nanoparticles seem to be coated individually, some agglomerates, encapsulated by a polymer film, could be observed. The grafting of the catalyst to the original surface of particles was further confirmed by X-ray photoelectron spectroscopy (XPS).  相似文献   

8.
Multifunctional fluorescent and superparamagnetic Fe(3)O(4)/poly(fluorescein O-methacrylate) [Fe(3)O(4)/poly(FMA)] nanoparticles with core/shell structure were synthesized via surface-initiated polymerization. First, polymerizable double bonds were introduced onto the surface of Fe(3)O(4) nanoparticles via ligand exchange and a condensation reaction. A fluorescent monomer, FMA, was then polymerized to the double bonds at the surface via free-radical polymerization, leading to form a fluorescent polymer shell around the superparamagnetic Fe(3)O(4) core. The resultant Fe(3)O(4)/poly(FMA) nanoparticles were characterized by Fourier transform infrared, nuclear magnetic resonance, and X-ray diffraction spectroscopy to confirm the reactions. Transmission electron microscopy images showed that the Fe(3)O(4)/poly(FMA) nanoparticles have a spherical and monodisperse core/shell morphology. Photoluminescence spectroscopy and superconducting quantum interference device magnetometer analyses confirmed that the Fe(3)O(4)/poly(FMA) nanoparticles exhibited fluorescent and superparamagnetic properties, respectively. In addition, we demonstrated the potential bioimaging application of the Fe(3)O(4)/poly(FMA) nanoparticles by visualizing the cellular uptake of the nanoparticles into A549 lung cancer cells.  相似文献   

9.
Cross-linkedβ-cyclodextrin polymer/Fe3O4 composite nanoparticles with core-shell structures were prepared via cross linking reaction on the surface of carboxymethylβ-cyclodextrin(CM-β-CD) modified Fe3O4 nanoparticles inβ-cyclodextrin alkaline solution by using epichlorohydrin as crosslinking agent.The morphology,structure and magnetic properties of the prepared composite nanoparticles were investigated by transmission electron microscopy(TEM),Fourier transform infrared(FTIR) spectrometry,X-ray diffraction(XRD) measurement,thermogravimetric analysis(TGA) and Vibrating sample magnetometry (VSM),respectively.  相似文献   

10.
热敏性高分子包裹的磁性微球的合成   总被引:14,自引:3,他引:14  
磁性高分子微球由于其在外加磁场作用下简单、快速易行的磁分离特性,其在细胞分离、固定化酶、靶向药物等领域的应用研究日益活跃,并显示出较好的应用前景[1].有关文献报道了制备磁性微球的不同方法[2].N 异丙基丙烯酰胺(N isopropylacryla...  相似文献   

11.
提出了一种简便易行的对磁性纳米粒子表面进行氨基化的方法. 首先使用化学共沉淀法合成了粒径为10 nm左右的Fe3O4纳米粒子, 然后用阿仑膦酸钠对其表面进行修饰, 使其表面具有了功能化的氨基. 利用透射电子显微镜(TEM)、X射线衍射(XRD)、振动样品磁强计(VSM)、动态光散射(DLS)仪、热重分析(TGA)仪、傅里叶变换红外(FT-IR)光谱仪、X射线光电子能谱(XPS)仪等对其进行表征. 结果显示磁性纳米粒子表面被成功地修饰了一层双膦酸分子. 所制备的纳米粒子可在pH=6.3稳定存在4周以上.  相似文献   

12.
This study describes a facile and versatile method for preparing polymer-encapsulated silica particles by ‘grafting from’ polymerization initiated by a redox system comprising ceric ion (Ce4+) as an oxidant and an organic reductant immobilized on the surface of silica nanoparticles. The silica nanoparticles were firstly modified by 3-aminopropyltriethoxysilane, then reacted with poly(ethylene glycol) acrylate through the Michael addition reaction, so that hydroxyl-terminated poly(ethylene glycol) (PEG) were covalently attached onto the nanoparticle surface and worked as the reductant. Poly(methyl methacrylate) (PMMA), a common hydrophobic polymer, and poly(N-isopropylacrylamide) (PNIPAAm), a thermosensitive polymer, were successfully grafted onto the surface of silica nanoparticles by ‘grafting from’ polymerization initiated by the redox reaction of Ce4+ with PEG on the silica surface in acid aqueous solutions. The polymer-encapsulated silica nanoparticles (referred to as silica@PMMA and silica@PNIPAAm, respectively) were characterized by infrared spectroscopy, thermogravimetric analysis, and transmission electron microscopy. On the contrary, graft polymerization did not occur on bare silica nanoparticles. In addition, during polymerization, sediments were observed for PMMA and for PNIPAAm at a polymerization temperature above its low critical solution temperature (LCST). But the silica@PNIPAAm particles obtained at a polymerization temperature below the LCST can suspend stably in water throughout the polymerization process.  相似文献   

13.
Fe(3)O(4) nanoparticles coated with oleic acid bilayer (a diameter about 12 nm) were synthesized. The structure and composition of the particles were analyzed by TEM, FTIR and TGA. The TGA experiments of the bilayer-coated particles show a distinct two-stage mass loss. Partition experiments show that the modified Fe(3)O(4) nanoparticles are affected by aqueous dispersion pH and ion strength. Accordingly, the Pickering emulsions stabilized by modified Fe(3)O(4) particles are also sensitive to pH and ion strength. The phase inversion of the emulsions occurs when 1.0013.50. The phase inversion of emulsions also can be adjusted by the ion strength. In interfacial adsorption experiments, the hydrophobic Fe(3)O(4) nanoparticles form particle clusters, while the hydrophilic particles form uniform multilayers.  相似文献   

14.
Mesoporous magnetic Fe3O4@C nanoparticles have been synthesized by a one-pot approach and used as adsorbents for removal of Cr (Ⅳ) from aqueous solution. Magnetic iron oxide nanostructured materials encapsulated by carbon were characterized by scanning electron microscope (SEM), nitrogen adsorption and desorption, X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. The adsorption performance of the nanomaterial adsorbents is tested with the removal of Cr (Ⅳ) from aqueous solution. The results reveal that the mesoporous magnetic Fe3O4@C nanospheres exhibit excellent adsorption efficiency and be easily isolated by an external magnetic field. In comparison with magnetic Fe3O4 nanospheres, the mesoporous magnetic Fe3O4@C exhibited 1.8 times higher removal rate of Cr Ⅵ. Themesoporous structure and an abundance of hydroxy groups on the carbon surfacemay be responsible for high absorbent capability.  相似文献   

15.
In this study we modified the surface of silica nanoparticles with methyl methacrylate by UV-induced graft polymerization. It is a surface-initiated polymerization reaction induced by ultraviolet irradiation. The resulting organic-inorganic nanocomposites were near-monodisperse and fabricated without homopolymerization of the monomer. Substantial increase in mean particle size was observed by SEM image analysis after UV-induced grafting of methyl methacrylate onto pure silica particles. FT-Raman spectroscopy and X-ray photoelectron spectroscopy studies of these materials revealed the successful grafting of methyl methacrylate onto the silica surface. The formation of a covalent bond between the grafted PMMA chains and silica surface was indicated by FT-Raman spectra. Thermogravimetric analysis of the PMMA-grafted silica particles indicated the polymer contents in good agreement with SEM photographs.  相似文献   

16.
磁性Fe3O4微粒表面有机改性   总被引:23,自引:1,他引:23  
在分散聚合法制备复合磁性微球过程中,采用硅烷偶联剂KH 570对磁性Fe3O4微粒进行表面改性.红外光谱(FTIR)、光电子能谱(XPS)分析结果表明,偶联剂与磁性微粒表面以化学键形式结合.改性后,Fe3O4微粒与单体及其聚合物之间具有良好的亲和性,采用改性后的磁性微粒可以显著改善磁性微球的性能指标.  相似文献   

17.
Uniform Fe3O4 nanospheres with a diameter of 100 nm were rapidly prepared using a microwave solvothermal method. Then Fe304/polypyrrole (PPy) composite nanospheres with well-defined core/shell structures were obtained through chemical oxidative polymerization of pyrrole in the presence of Fe3O4; the average thickness of the coating shell was about 25 nm. Furthermore, by means of electrostatic interactions, plentiful gold nanoparticles with a diameter of 15 nm were assembled on the surface of Fe3O4/PPy to get Fe3O4/PPy/Au core/shell/shell structure. The morphology, structure, and composition of the products were characterized by transmission electronic microscopy (TEM), scanning electronic microscopy (SEM), X-ray powder diffraction (XRD), and Fourier transform infrared (FT-IR) spectroscopy. The resultant nanocomposites not only have the magnetism of Fe3O4 nanoparticles that make the nanocomposites easily controlled by an external magnetic field but also have the good conductivity and excellent electrochemical and catalytic properties of PPy and Au nanoparticles. Furthermore, the nanocomposites showed excellent electrocatalytic activities to biospecies such as ascorbic acid (AA).  相似文献   

18.
Nanoscale monocrystalline starch particles were successfully modified using stearic acid chloride and poly(ethylene glycol) methyl ether. Surface modification was confirmed using FTIR, XPS spectroscopy, and contact angle measurements. X-ray diffraction and DSC analysis confirmed that there was no alteration of the starch crystalline structure due to the surface modification. The grafts at the starch surface were also found to crystallize on the surface. TEM showed the individualization of nanoparticles as a result of the reduction of polar and hydrogen bonding forces. These results show our ability to modify the starch nanocrystal surface with plasticizing chains. Modified nanoparticles can find applications as compatibilized polymer additives, surface-active particles, and co-continuous nanocomposite precursors.  相似文献   

19.
In this study, multifunctional nanoparticles containing thermosensitive polymers grafted onto the surfaces of 6-nm monodisperse Fe(3)O(4) magnetic nanoparticles coated by silica were synthesized using reverse microemulsions and free radical polymerization. The magnetic properties of SiO(2)/Fe(3)O(4) nanoparticles show superparamagnetic behavior. Thermosensitive PNIPAM (poly(N-isopropylacrylamide)) was then grafted onto the surfaces of SiO(2)/Fe(3)O(4) nanoparticles, generating thermosensitive and magnetic properties of nanocomposites. The sizes of fabricated nanoparticles with core-shell structure are controlled at about 30 nm and each nanoparticle contains only one monodisperse Fe(3)O(4) core. For thermosensitivity analysis, the phase transition temperatures of multifunctional nanoparticles measured using DSC was at around 34-36 degrees C. The magnetic characteristics of these multifunctional nanoparticles were also superparamagnetic.  相似文献   

20.
Hybrids of Fe(3)O(4) nanoparticles and surface-modified graphene nanosheets (GNs) were synthesized by a two-step process. First, graphene nanosheets were modified by SOCl(2) and 4-aminophenoxyphthalonitrile to introduce nitrile groups on their surface. Second, the nitrile groups of surface-modified graphene nanosheets were reacted with ferric ions on the surface of Fe(3)O(4) with the help of relatively high boiling point solvent ethylene glycol to form a GNs/Fe(3)O(4) hybrid. The covalent attachment of Fe(3)O(4) nanoparticles on the graphene nanosheet surface was confirmed by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy-dispersive X-ray spectrometer (EDS) and scanning electron microscopy (SEM). TEM and HRTEM observations indicated that the sizes of the nanoparticles and their coverage density on GNs could be easily controlled by changing the concentration of the precursor and the weight ratio to GNs. Magnetic measurements showed that magnetization of the hybrid materials is strongly influenced by the reaction conditions. Chemically bonded by phthalocyanine, the solubility of as-synthesized GNs/Fe(3)O(4) hybrid materials was greatly enhanced, which was believed to have potential for applications in the fields of composites, wastewater treatment and biomaterials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号