首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
There is much interest in the interactions between the active constituents of traditional Chinese medicine and biomolecules. By use of frontal analysis on an affinity column we have examined the binding interaction of berberine chloride (BC), a major active constituent of coptis, with bovine serum albumin (BSA) in 40 mM phosphate buffer, pH 7.0. Adsorption of BC on immobilized BSA was in accordance with the Langmuir isotherm, suggesting BC is binding to a single type of site on the immobilized BSA. The binding constant was 4.79 × 104 L mol?1 at 30 °C, less than the value of 6.61 × 104 L mol?1 obtained by fluorescence spectroscopy under the same buffer and temperature conditions. The effects of temperature on the retention, binding constant, and active binding sites, and on the percentage protein binding of BC, were also investigated. Thermodynamic measurements indicated that the increase in entropy was an important process promoting the interaction between BC and BSA.  相似文献   

2.
Lei  Genhu  Yang  Rong  Zeng  Xiaolei  Shen  Yehua  Zheng  Xiaohui  Wei  Yinmao 《Chromatographia》2007,66(11):847-852

There is much interest in the interactions between the active constituents of traditional Chinese medicine and biomolecules. By use of frontal analysis on an affinity column we have examined the binding interaction of berberine chloride (BC), a major active constituent of coptis, with bovine serum albumin (BSA) in 40 mM phosphate buffer, pH 7.0. Adsorption of BC on immobilized BSA was in accordance with the Langmuir isotherm, suggesting BC is binding to a single type of site on the immobilized BSA. The binding constant was 4.79 × 104 L mol−1 at 30 °C, less than the value of 6.61 × 104 L mol−1 obtained by fluorescence spectroscopy under the same buffer and temperature conditions. The effects of temperature on the retention, binding constant, and active binding sites, and on the percentage protein binding of BC, were also investigated. Thermodynamic measurements indicated that the increase in entropy was an important process promoting the interaction between BC and BSA.

  相似文献   

3.
Over the past decade, immobilized metal-affinity adsorbents have attracted increasing interest for purification of natural and recombinant immunoglobulin G (IgG). In this work, nickel and cobalt metal ions complexed with CM-Asp (carboxymethylaspartate) immobilized on poly(ethylenevinyl alcohol) (PEVA) hollow fiber membranes were evaluated for purification of human IgG from serum. The buffer system and NaCl had important effects on human serum protein adsorption in both adsorbents. Efficient purification of IgG was accomplished in sodium phosphate buffer without NaCl at pH 7.0. Under this condition, the electrostatic interactions are important for adsorption. The Ni(II)-CM-Asp–PEVA had a protein adsorption capacity of 17.5 mg of IgG mL?1 fiber when human serum diluted was loaded in crossflow filtration mode and the eluted IgG had a purity of 82.6 % (based on total protein and IgG, IgM, HSA, and Trf nephelometric analysis). Fitting the experimental IgG adsorption data to the Langmuir and Langmuir–Freundlich models showed that Ni(II)-CM-Asp and Co(II)-CM-Asp had Langmuirean and non-Langmuirean behavior, respectively, with positive cooperativity for IgG-Co(II)-CM-Asp binding, probably due to multipoint interactions (n = 2.12 ± 0.31). Thus, these membranes can be considered as alternative adsorbents for the purification or depletion of IgG from human serum.  相似文献   

4.
The interaction between cefixime (antibacterial) and tolcapone (Parkinson’s disease) drugs with bovine serum albumin (BSA) was investigated using several spectroscopic techniques viz. UV–Vis, fluorescence and circular dichroism. The thermodynamic parameters of the interactions were calculated, which indicated that the binding processes are spontaneous and H-bonding and van der Waals forces play a major role in BSA–cefixime interaction and hydrophobic interactions dominate BSA–tolcapone complexation. Cefixime quenches the intrinsic fluorescence of BSA by dynamic process while tolcapone through static process. The binding constant of the BSA–tolcapone complex (107 L mol?1) is found to be relatively higher than that of BSA–cefixime complex (104 L mol?1). The binding distance between BSA and cefixime and tolcapone is calculated to be 3.3 and 4.2 nm, respectively. Both fluorescence and circular dichrosim spectral studies confirmed conformational changes in BSA upon binding with these drugs. Molecular docking studies suggest the possible binding sites in the protein molecule.'  相似文献   

5.
Among the biological parameters of chemotherapeutics, serum albumin binding is a critical factor in determining drug distribution and bioavailability. In this study, the binding properties as well as the interaction of ampicillin and streptomycin at their binding sites of bovine serum albumin (BSA) were investigated. The binding constant varied from 3.2 × 103 M?1 at 298 K to 37.5 × 103 M?1 at 313 K for ampicillin, and from 10.7 × 103 M?1 at 298 K to 3.5 × 103 M?1 at 313 K for streptomycin. By increasing the temperature, from 298 to 313 K, the binding affinity decreased by about 11-fold for ampicillin. Conversely, streptomycin showed stronger binding at higher temperature, which is decreased by threefold at 298 K. Interestingly, the affinity of ampicillin with the free BSA was ~4-fold higher than the binding with BSA/streptomycin complex. In contrast, the affinity of streptomycin with the free BSA was ~6-fold lower than the binding with BSA/ampicillin complex. Mutual binding experiments indicate that ampicillin and streptomycin are sharing both of common and different binding sites on BSA. Dissection of the forces of interactions indicated that rigid-body binding was the mode of binding of ampicillin and streptomycin with BSA with minor degree of conformational changes. Both of ampicillin and streptomycin can bind with free BSA. Furthermore, the binding of ampicillin with BSA improves the binding of streptomycin, while the binding of streptomycin with BSA adversely affect the binding of ampicillin.  相似文献   

6.
Danilevicius  A.  Niemeyer  B.  Liesiene  J. 《Chromatographia》2006,63(13):S75-S80

Immobilized stationary phases for hydrophobic interaction chromatography (HIC) of proteins are prepared by coating macroporous silica Daisogel of different porosity with hydrophobized cellulose derivatives. The polymer adsorbed on the silica surface afterwards was cross-linked with bifunctional compounds. A uniform polymer nanocoating was indicated using the nitrogen gas adsorption method BET and scanning electron microscopy. The absence of non-specific protein sorption of the synthesized adsorbents shows that the developed polymeric coating isolates silica surface from contact with the sorbate. The retention data of bovine serum albumin (BSA) in the HIC mode on different synthesized adsorbents were evaluated. It was shown that sorption capacity of such phases may vary over a wide range and depends mainly on the substitution degree of the immobilized polymer. The dynamic sorption capacity of BSA was up to 63 mg mL−1. The results proved that the new stationary phases have significant promise for the separation and purification of proteins in the HIC mode.

  相似文献   

7.
The interactions of two drugs, cryptotanshinone (CTS) and icariin, with bovine serum albumin (BSA) and human serum albumin (HSA) have been investigated using multiple spectroscopic techniques under imitated physiological conditions. CTS and icariin can quench the fluorescence intensity of BSA/HSA by a static quenching mechanism with complex formation. The binding constants of CTS–BSA, CTS–HSA, icariin–BSA and icariin–HSA complexes were observed to be 1.67 × 104, 4.04 × 104, 4.52 × 105 and 4.20 × 105 L·mol?1, respectively at 298.15 K. The displacement experiments suggested icariin/CTS are primarily bound to tryptophan residues of the proteins within site I and site II. The thermodynamic parameters calculated on the basis of the temperature dependence of the binding constants revealed that the binding of CTS–BSA/HSA mainly depends on van der Waals interaction and hydrogen bonds, and yet the binding of icariin–HSA/BSA strongly relies on the hydrophobic interactions. The binding distances between BSA/HSA and CTS/icariin were evaluated by the Föster non-radiative energy transfer theory. The results of synchronous fluorescence, 3D fluorescence, FT-IR and CD spectra indicates that the conformations of proteins were altered with the addition of CTS or icariin. In addition, the effects of some common ions on the binding constants of CTS/icariin to proteins are also discussed.  相似文献   

8.
The interaction between daidzein and 3′-daidzein sulfonic sodium with bovine serum albumin (BSA) in physiological buffer (pH = 7.4) is investigated by fluorescence quenching technique and UV/vis absorption spectra. The results reveal that both daidzein and 3′-daidzein sulfonic sodium could strongly quench the intrinsic fluorescence of BSA. The quenching mechanism of both the daidzein and 3′-daidzein sulfonic sodium for BSA is static quenching procedure. The apparent binding constants K a and number of binding sites n of daidzein and 3′-daidzein sulfonic sodium with BSA are obtained by fluorescence quenching method. The thermodynamic parameters, enthalpy change (Δr H m ), and entropy change (Δr S m ), are calculated, respectively, which indicate that the interaction of daidzein with BSA is driven mainly by hydrogen bonding and van der Waals, and 3′-daidzein sulfonic sodium with BSA is driven mainly by hydrophobic forces. The distance r between BSA with daidzein and 3′-daidzein sulfonic sodium are calculated to be 4.02 nm and 3.08 nm, respectively, based on F?rster’s non-radiative energy transfer theory. The results of synchronous fluorescence spectra show that binding of daidzein and 3′-daidzein sulfonic sodium with BSA cannot induce conformational changes in BSA.  相似文献   

9.
The interactions between terazosin and bovine serum albumin (BSA) were studied by spectrofluorimetry. The binding constants of terazosin with BSA were measured at different temperatures. The effects of various metal ions on the binding constants of terazosin with BSA were also studied. The optimum conditions of synchronous fluorometric determination of terazosin were studied and the method was successfully applied to the determination of terazosin added to serum and urine samples (3σ detection limit 0.21 mg l−1).  相似文献   

10.
Bovine α1-acid glycoprotein (bAAG) and bovine serum albumin (BSA) are plasmatic acceptors working as carriers by the specific and reversible binding of several drugs in vivo. We synthesized affinity columns by coupling bAAG and BSA to an activated chromatographic support through their carbohydrate moieties, to preserve protein tertiary structure and, consequently, to improve the biological activity in vitro. The bAAG and BSA affinity columns were used to study the binding of acidic and basic drugs. Moreover, a purification strategy was developed for the cleanup of drug residues from biological matrices and foods, prior to screening and/or confirmatory analysis, on the basis of the specific molecular recognition between the protein and the drug. The aim of this work was to test the potency of bAAG- and BSA-based affinity chromatography to bind some veterinary drugs and purify them in the context of the official control of animal products. The efficiency of these homemade affinity columns in minimising matrix interference and in selective cleanup of different classes of substances was reported and discussed. Figure “Coupling strategies in synthesizing plasmatic acceptor affinity columns: the covalent coupling of bAAG and BSA through their carbohydrate moiety allows one to preserve the gross tertiary structure of the protein and thus its biological activity, whereas coupling through the ε-amine group of lysine residues can reduce the interactions with the binding sites of the plasmatic acceptor.”  相似文献   

11.
Among the pharmacokinetic parameters of chemotherapeutics, serum albumin binding is a critical factor in determining drug distribution and bioavailability. In this study, the binding properties as well as the interaction of spectinomycin with Bovine serum albumin was investigated. Spectinomycin showed stronger binding with BSA at higher temperatures, which diminishes by decreasing the temperature. The binding constant of spectinomycin with BSA varied from 3.1 × 103 M?1 at 298 K to 6.3 × 103 M?1 at 313 K. By increasing the temperature, from 298 to 313 K, the binding affinity was increased by twofolds. Thermodynamic analysis indicated changes in albumin conformation and partial loss of folding during spectinomycin-albumin binding. The mild-moderate binding affinity of spectinomycin with BSA will be important in determining the drug–drug interactions at the binding sites of BSA. The presence of stronger binding ligand e.g., chloramphenicol, tetracyclines or diclofenac will compete with spectinomycin for its binding sites, therefore, lowering its serum albumin binding. The result of this study will be helpful in understanding of the binding properties and mechanisms of interaction of spectinomycin with bovine serum albumin.  相似文献   

12.
The goal of this study was to use a novel surface chemistry for modifying gold surfaces to decrease the steric hindrance, minimize the nonspecific bindings while providing directed immobilization of proteins for advancing the transducer property and to provide a biosensing platform for surface plasmon resonance (SPR) applications. Mixed self‐assembled monolayers (mSAMs) were prepared using 3,3′‐Dithiodipropionic acid di (N‐hydroxysuccinimide ester) (DSP) and 6‐mercapto‐1‐hexanol (MCH) and the selected model proteins bovine serum albumin (BSA) and lysozyme were tested for binding efficiency. First, binding of these two proteins at constant concentration to different DSP:MCH mSAMs were compared to deduce the best molar ratio for forming mSAM using a continuous flow system coupled to SPR. Coincidently the maximum protein binding DSP:MCH mSAM were the same for both proteins. The change in Response Unit (∆RU) signal due to protein binding between DSP SAM and maximum protein binding DSP:MCH mSAM for lysozyme binding was more in comparison to BSA binding. Second, the effect of BSA and lysozyme concentration on binding efficiency to maximum protein binding DSP:MCH mSAM were compared and discussed. Lysozyme and BSA were shown to reach saturations on the same monolayer at concentrations of 5.7x10−5 and 8.96x10−6 [M] respectively, hence the molar ratio for limit concentrations is 6:1. The DSP SAM, MCH SAM, and DSP:MCH mSAMs where maximum and minimum protein binding occurs were also characterized with XPS and Attenuated total reflectance‐Fourier transform infrared (ATR‐FTIR) spectroscopy. Blank gold surface, maximum protein binding DSP:MCH mSAM and BSA immobilized DSP:MCH mSAM on gold surface were also investigated utilizing tapping mode AFM.  相似文献   

13.
The interactions of serum albumins such as human serum albumin (HSA) and bovine serum albumin (BSA) with emodin, rhein, aloe-emodin and aloin were assessed employing fluorescence quenching and absorption spectroscopic techniques. The results obtained revealed that there are relatively strong binding affinity for the four anthraquinones with HSA and BSA and the binding constants for the interactions of anthraquinones with HSA or BSA at 20 degrees C were obtained. Anthraquinone-albumin interactions were studied at different temperatures and in the presence of some metal ions. And the competition binding of anthraquinones with serum albumins was also discussed. The Stern-Volmer curves suggested that the quenching occurring in the reactions was the static quenching process. The binding distances and transfer efficiencies for each binding reactions were calculated according to the F?ster theory of non-radiation energy transfer. Using thermodynamic equations, the main action forces of these reactions were also obtained. The reasons of the different binding affinities for different anthraquinone-albumin reactions were probed from the point of view of molecular structures.  相似文献   

14.
The interaction of surfactin, a typical biosurfactant, with bovine serum albumin (BSA) was investigated by surface tension, fluorescence, freeze-fractured transmission electron microscopy (FF-TEM) and circular dichroism (CD) measurements. The surface tension curves of pure surfactin solution and surfactin/BSA solutions have different phenomena, where two obvious inflections determined as the critical aggregation concentration (cac) and the critical micelle concentration (cmc) appear for surfactin/BSA solutions. The higher BSA concentration, the higher cac and cmc values for surfactin/BSA solution. Fluorescence spectra show that the structure change of BSA is dependent on both surfactin and BSA concentration. The micropolarity, FF-TEM and CD results further demonstrate the interaction between BSA and surfactin. The excess free energy (ΔG0) of surfactin/BSA interactions have been obtained as ?6.13 and 5.32 kJ/mol for 1.0 × 10?6 and 3.8 × 10?6 mol/L BSA concentration, respectively. The binding ratio (R) determined for surfactin/BSA systems are higher than that reported for dirhamnolipid to BSA. Above all, it can be concluded that the hydrophobic interaction and the hydrogen bonds between surfactin and BSA play the key role for the high binding ratio for surfactin to BAS.  相似文献   

15.
《Analytical letters》2012,45(14):2721-2736
Abstract

The binding of trazodone hydrochloride (TZH), an antidepressant drug, to bovine serum albumin (BSA) has been investigated by fluorescence spectroscopic analysis. The fluorescence emission of BSA (λem=350 nm) was quenched by TZH while that of this ligand was enhanced (λem=443 nm). The spectral behavior was consistent with the static quenching mechanism, and the apparent binding constant, K a (1.05×104 l mol?1) as well as binding site number, n (~1), were estimated. Thermodynamic parameters obtained from the measured data at different temperatures showed that the binding of TZH to BSA involved predominantly hydrophobic interactions as well as smaller contributions from electrostatic forces. Phenylbutazone and ibuprofen were utilized as competitive markers for sites I and II, respectively, in the interaction of TZH with BSA. This competitive displacement procedure indicated that the likely binding was site I, i.e., subdomain IIA, and this was supported by the observation that up to 50% of this site marker, phenylbutazone, could be exchanged with TZH whilst only a few percent of ibuprofen were so affected.  相似文献   

16.
The combined use of a metal‐complex catalyst and an enzyme is attractive, but typically results in mutual inactivation. A rhodium (Rh) complex immobilized in a bipyridine‐based periodic mesoporous organosilica (BPy‐PMO) shows high catalytic activity during transfer hydrogenation, even in the presence of bovine serum albumin (BSA), while a homogeneous Rh complex exhibits reduced activity due to direct interaction with BSA. The use of a smaller protein or an amino acid revealed a clear size‐sieving effect of the BPy‐PMO that protected the Rh catalyst from direct interactions. A combination of Rh‐immobilized BPy‐PMO and an enzyme (horse liver alcohol dehydrogenase; HLADH) promoted sequential reactions involving the transfer hydrogenation of NAD+ to give NADH followed by the asymmetric hydrogenation of 4‐phenyl‐2‐butanone with high enantioselectivity. The use of BPy‐PMO as a support for metal complexes could be applied to other systems consisting of a metal‐complex catalyst and an enzyme.  相似文献   

17.
《Analytical letters》2012,45(1):133-141
Polyclonal antibodies against conjugates of chloramphenicol succinate and chloramphenicol base with proteins were obtained and characterized in direct ELISA. Antiserum against a conjugate of chloramphenicol (CAP) base with BSA (direct coupling) was very specific and showed cross-reactivity only with CAP succinate (11.3%) and CAP base (4.6%); whereas, antisera against a conjugate of CAP succinate with a protein recognized CAP succinate strongly as an initial compound. In direct ELISA, antisera against a conjugate of CAP succinate with KLH (homologous assay) and CAP base with BSA (heterologous assay) showed similar sensitivity: IC50 were 1.3 and 1.5 ng mL?1, respectively. Applicability of the immunoreagents obtained was shown in the analysis of CAP residues in milk (3.5% fat content). Detection limit of 0.3 ng mL?1 was obtained for milk diluted 5 times.  相似文献   

18.

Background  

Protein microarrays represent an emerging class of proteomic tools to investigate multiple protein-protein interactions in parallel. A sufficient proportion of immobilized proteins must maintain an active conformation and an orientation that allows for the sensitive and specific detection of antibody and ligand binding. In order to establish protein array technology for the characterization of the weak interactions between leukocyte membrane proteins, we selected the human leukocyte membrane protein CD200 (OX2) and its cell surface receptor (hCD200R) as a model system. As antibody-antigen reactions are generally of higher affinity than receptor-ligand binding, we first analyzed the reactivity of monoclonal antibodies (mAb) to normal and mutant forms of immobilized CD200R.  相似文献   

19.
The bindings of detemir [LysB29(Nε-tetradecanoyl)des(B30)-insulin] with two highly homologous albumins, HSA (human serum albumin) and BSA (bovine serum albumin), were investigated through CD, spectrofluorophotometry, and molecular docking analysis. The absence of any tryptophanyl residue in detemir makes albumin binding study possible by exclusive tryptophanyl spectral quenching at 340 nm (λem = 296 nm). The interactions found to be static (Kq > 1010 M?1 s?1) with Stern–Volmer constants ≈103 M?1. The observed ΔG 0 that was negative in all cases concludes the reactions were spontaneous. Domains I and III of an albumin unfold with 5.0 M urea at pH 7.4, although domain II remains intact. Significant decreases in ΔH 0 and ΔS 0 were due to unfolding explicit that detemir binding may involve domains I and III of albumins. Temperature-dependent changes in binding were higher in HSA than BSA but after unfolding such changes were very less, further indicating the role of domains I and III in detemir binding. Pro28 and Tyr26 of insulin were found to be interacting with Arg114 and Val116 of HSA domain I, while myristate segment of detemir binds to Lys519 of domain III. Interactions seem to be predominantly hydrophobic and entropy driven. Although detemir binds to albumin through myristate, the peptide part shows involvement in binding.  相似文献   

20.
Silica (SiO2) nanospheres (NSs) with immobilized metal ligands have been prepared for the affinity separation of proteins. First, SiO2 NSs were prepared by controlled hydrolysis of tetraethoxysilane in a basic aqueous-ethanol solution. Then through reaction of iminodiacetic acid (IDA) with 3-glycidoxypropyltrimethoxysilane and immobilization of them onto the surfaces of above SiO2 NSs, novel affinity adsorbents with IDA chelating groups were obtained. After chelating Ni2+ ions, the SiO2–IDA–Ni2+ NSs were applied to separate his-tagged proteins directly from the mixture of lysed cells. The SiO2–IDA–Ni2+ NSs present negligible nonspecific protein adsorption and high protein binding ability (28.3 mg/g).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号