首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proteomics represents a significant challenge to separation scientists because of the diversity and complexity of proteins and peptides present in biological systems. Mass spectrometry as the central enabling technology in proteomics allows detection and identification of thousands of proteins and peptides in a single experiment. Liquid chromatography is recognized as an indispensable tool in proteomics research since it provides high-speed, high-resolution and high-sensitivity separation of macromolecules. In addition, the unique features of chromatography enable the detection of low-abundance species such as post-translationally modified proteins. Components such as phosphorylated proteins are often present in complex mixtures at vanishingly small concentrations. New chromatographic methods are needed to solve these analytical challenges, which are clearly formidable, but not insurmountable. This review covers recent advances in liquid chromatography, as it has impacted the area of proteomics. The future prospects for emerging chromatographic technologies such as monolithic capillary columns, high temperature chromatography and capillary electrochromatography are discussed.  相似文献   

2.
Liquid separation methods in combination with electrospray mass spectrometry as well as the recently introduced fragmentation method electron capture dissociation (ECD) have become powerful tools in proteomics research. This paper presents the results of the first successful attempts to combine liquid chromatography (LC) and Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) with ECD in the analysis of a mixture of standard peptides and of a bovine serum albumin tryptic digest. A novel electron injection system provided conditions for ECD sufficient to yield extensive sequence information for the most abundant peptides in the mixtures on the time-scale of the chromatographic separation. The results suggest that LC/ECD-FTICRMS can be employed in the characterization of peptides in enzymatic digests of proteins or protein mixtures and identify and localize posttranslational modifications.  相似文献   

3.
High-resolution liquid chromatography separation is essential to in-depth proteomic profiling of complex biological samples. Herein, we established an ion-pair reversed-phase×reversed-phase two-dimensional liquid chromatography (IPRP×RP 2DLC) strategy for comprehensive proteomic analysis. Both RPLC separation dimensions were performed at low pH, with trifluoroacetic acid(TFA) and formic acid(FA) as mobile phase addictive, respectively. As the good separation resolution offered by ion-pairing effect of TFA, the fractionation efficiency was greatly improved with 74.0% peptides identified in just one fraction. Comparing with conventional high pH RP fractionation, the overall separation rate of IPRP was about 1.6 times that of high-pH RP, which increased the number of identified peptides by 21%. Further, 2169 proteins and 8540 peptides were confidently identified from crude serum sample by our IPRP×RP 2DLC strategy, exhibiting great potential in clinical proteomics in the future.  相似文献   

4.
Proteomics is the large-scale study of proteins, particularly their expression, structures and functions. This still-emerging combination of technologies aims to describe and characterize all expressed proteins in a biological system. Because of upper limits on mass detection of mass spectrometers, proteins are usually digested into peptides and the peptides are then separated, identified and quantified from this complex enzymatic digest. The problem in digesting proteins first and then analyzing the peptide cleavage fragments by mass spectrometry is that huge numbers of peptides are generated that overwhelm direct mass spectral analyses. The objective in the liquid chromatography approach to proteomics is to fractionate peptide mixtures to enable and maximize identification and quantification of the component peptides by mass spectrometry. This review will focus on existing multidimensional liquid chromatographic (MDLC) platforms developed for proteomics and their application in combination with other techniques such as stable isotope labeling. We also provide some perspectives on likely future developments.  相似文献   

5.
In proteomics, nanoflow multidimensional chromatography is now the gold standard for the separation of complex mixtures of peptides as generated by in-solution digestion of whole-cell lysates. Ideally, the different stationary phases used in multidimensional chromatography should provide orthogonal separation characteristics. For this reason, the combination of strong cation exchange chromatography (SCX) and reversed-phase (RP) chromatography is the most widely used combination for the separation of peptides. Here, we review the potential of hydrophilic interaction liquid chromatography (HILIC) as a separation tool in the multidimensional separation of peptides in proteomics applications. Recent work has revealed that HILIC may provide an excellent alternative to SCX, possessing several advantages in the area of separation power and targeted analysis of protein post-translational modifications. Figure Artistic impression of the HILIC separation mechanism  相似文献   

6.
Simpson DC  Smith RD 《Electrophoresis》2005,26(7-8):1291-1305
Mass spectrometry (MS)-based proteomics is currently dominated by the analysis of peptides originating either from digestion of proteins separated by two-dimensional gel electrophoresis (2-DE) or from global digestion; the simple peptide mixtures obtained from digestion of gel-separated proteins do not usually require further separation, while the complex peptide mixtures obtained by global digestion are most frequently separated by chromatographic techniques. Capillary electrophoresis (CE) provides alternatives to 2-DE for protein separation and alternatives to chromatography for peptide separation. This review attempts to elucidate how the most promising CE modes, capillary zone electrophoresis (CZE) and capillary isoelectric focusing (CIEF), might best be applied to MS-based proteomics. CE-MS interfacing, mass analyzer performance, column coating to minimize analyte adsorption, and sample stacking for CZE are considered prior to examining numerous applications. Finally, multidimensional systems that incorporate CE techniques are examined; CZE often finds use as a fast, final dimension before ionization for MS, while CIEF, being an equilibrium technique, is well-suited to being the first dimension in automated fractionation systems.  相似文献   

7.
The Orbitrap mass analyzer has become a mainstream mass spectrometry technique. In addition to providing a brief introduction to the Orbitrap technology and its continuing development, this article reviews the most recent publications quoting the use of the Orbitrap detection for a variety of chromatographic separation techniques. Its coupling to reversed-phase liquid chromatography (LC) represents undoubtedly the most ubiquitous approach to both small molecule and proteomic analyses. Multi-dimensional LC separations have an important role to play in the proteomics applications while an ultra-high-pressure LC is more frequently encountered in the area of metabolomics and metabolite analysis. Recently, special chromatographic techniques such as hydrophilic interaction chromatography and its variations have also been also cited with the Orbitrap detection.  相似文献   

8.
Mass spectrometry (MS)-based proteomics is emerging as a broadly effective means for identification, characterization, and quantification of proteins that are integral components of the processes essential for life. Characterization of proteins at the proteome and sub-proteome (e.g., the phosphoproteome, proteoglycome, or degradome/peptidome) levels provides a foundation for understanding fundamental aspects of biology. Emerging technologies such as ion mobility separations coupled with MS and microchip-based-proteome measurements combined with MS instrumentation and chromatographic separation techniques, such as nanoscale reversed phase liquid chromatography and capillary electrophoresis, show great promise for both broad undirected and targeted highly sensitive measurements. MS-based proteomics increasingly contribute to our understanding of the dynamics, interactions, and roles that proteins and peptides play, advancing our understanding of biology on a systems wide level for a wide range of applications including investigations of microbial communities, bioremediation, and human health.  相似文献   

9.
Ionic liquids (ILs) immobilized on silica as novel high performance liquid chromatography (HPLC) stationary phases have attracted considerable attention. However, it has not been applied to protein separation. In this paper, N-methylimidazolium IL-modified silica-based stationary phase (SilprMim) was prepared and investigated as a novel multi-interaction stationary phase charged positively for protein separation. The results indicate that all of the basic proteins tested cannot be absorbed on this novel stationary phase, whereas all of the acidic proteins tested can be retained, and the baseline separation of eight kinds of acidic protein standards can be achieved when performed in reversed phase/ ion-exchange chromatography (RPLC/IEC) mode. Compared with commonly used commercial octadecylated silica (ODS) column, the novel stationary phase can show selectivity and good resolution to acidic proteins, which has a promising application in the separation and analyses of acidic proteins from the complex samples in proteomics. In addition, the chromatographic behavior of proteins, the effect of the ligand structure and the retention mechanism on this stationary phase were also investigated.  相似文献   

10.
Electrospray ionization ion trap mass spectrometry (ESI-ITMS) coupled to a two-dimensional liquid chromatographic separation was applied to the identification of peptides in antimicrobial fractions of the aqueous extracts of nine Italian cheese varieties. In particular, the chromatographic fractions collected during a preliminary fast protein liquid chromatography (FPLC) separation on the cheese extracts were assayed for antimicrobial activity towards Lactobacillus sakei A15. Active fractions were subsequently analyzed by reversed-phase high-performance liquid chromatography electrospray ionization sequential mass spectrometry (HPLC/ESI)-ITMSn, with n up to 3. Peptide identification was then performed starting from a conventional proteomics approach based on tandem mass spectrometric (MS/MS) analysis followed by database searching. In many cases this strategy had to be integrated by a careful correlation between spectral information and predicted peptide fragmentation, in order to reach unambiguous identifications. When even this integrated approach failed, MS3 measurements provided decisive information on the amino acid sequence of some peptides, through fragmentation of pendant groups along the peptide chain. As a result, 45 peptides, all arising from hydrolysis of milk caseins, were identified in nine antimicrobial FPLC fractions of aqueous extracts obtained from five of the nine cheese varieties considered. Many of them corresponded to peptides already known to exhibit biological activity.  相似文献   

11.
在蛋白质组学研究中,多肽混合物的有效分离对蛋白质鉴定和蛋白质之间相互作用的研究起着决定性的影响。基于此,用反相液相色谱研究了在两个不同长度的色谱柱上分离多肽混合物时色谱柱长度与峰容量的关系,同时考察了梯度洗脱时间对峰容量和峰宽的影响。实验结果表明,色谱柱长度对峰容量有显著的影响,而延长梯度洗脱时间不仅可以增加峰容量,而且可以增加峰宽。这说明用毛细管液相色谱 串联质谱联用方法对多肽混合物进行分离鉴定时,采用较长的色谱柱和较长的梯度洗脱时间有利于对更多的多肽进行分析鉴定。  相似文献   

12.
李瑛  白泉  陈刚  王骊丽 《色谱》2008,26(3):331-334
建立了疏水型色谱饼(10 mm×20 mm i.d.)与反相色谱(RPLC)离线二维色谱快速分离制备人血清蛋白质组学样品,并用基体辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)进行检测的方法。以4种标准蛋白质的稀溶液为模型进行分离富集,得到细胞色素c(Cyt-c)与肌红蛋白(Myo)的检出限均为1 pmol/μL,溶菌酶(Lys)和胰岛素(Ins)的检出限为0.1 pmol/μL。将此方法用于人血清蛋白质组学样品的分离与制备,随着血清处理量的增大,质谱可检出的组分数目与信号强度均增加,当血清处理量达到1.0 mL时,可检出低丰度蛋白质或多肽285个(相对分子质量均在15000以下)。研究中将1 μg Cyt-c加入到0.5 mL血清中,用上述方法在分离富集低丰度Cyt-c上取得了很好的效果。结果表明,采用疏水型色谱饼与反相色谱联用技术不仅可对血清样品中低丰度蛋白质进行有效的分离和富集,而且一次样品的处理量大,可显著提高低丰度蛋白质的分析、检测水平。  相似文献   

13.
Since “omics” techniques emerged, plant studies, from biochemistry to ecology, have become more comprehensive. Plant proteomics and metabolomics enable the construction of databases that, with the help of genomics and informatics, show the data obtained as a system. Thus, all the constituents of the system can be seen with their interactions in both space and time. For instance, perturbations in a plant ecosystem as a consequence of application of herbicides or exposure to pollutants can be predicted by using information gathered from these databases. Analytical chemistry has been involved in this scientific evolution. Proteomics and metabolomics are emerging fields that require separation, identification, and quantification of proteins, peptides, and small molecules of metabolites in complex biological samples. The success of this work relies on efficient chromatographic and electrophoretic techniques, and on mass spectrometric detection. This paper reviews recent developments in the use of monolithic columns, focusing on their applications in “top-down” and “bottom-up” approaches, including their use as supports for immobilization of proteolytic enzymes and their use in two-dimensional and multidimensional chromatography. Whereas polymeric columns have been predominantly used for separation of proteins and polypeptides, silica-based monoliths have been more extensively used for separation of small molecules of metabolites. Representative applications in proteomics and in analysis of plant metabolites are given and summarized in tables.  相似文献   

14.
The analysis of macromolecular protein complexes is an important factor in understanding most cellular processes, e.g., protein transport into cell organells, signal transduction via biological membranes, apoptosis, energy metabolism, directed motion of cells, and cell division. These complexes are not only built of various numbers of different proteins but also of prosthetic groups and RNA molecules. To understand the role each protein plays in a complex, a complete analysis of all protein compounds is necessary. Therefore, several separation steps have to be coupled to mass spectrometry to identify the proteins. In this work, we describe the application of multidimensional liquid chromatography, SCX-RP-LC as well as SAX-RP-LC, coupled to electrospray ion trap mass spectrometry. Tryptic digested ribosomes were separated by ion exchange chromatography manually collected and prepared for reversed phase chromatography to analyze the peptides via nano-ESI mass spectrometry. The total numbers of identified proteins are compared in consideration of the separation method (SCX-RP versus SAX-RP).  相似文献   

15.
Mao X  Wei J  Niu M  Zhou L  Wang X  Tong W  Qin W  Zhang Y  Qian X 《色谱》2012,30(2):170-177
建立了依赖色谱保留时间的智能化选择反应监测质谱方法,并与非依赖色谱保留时间的智能化选择反应监测质谱分析方法对不同体系(牛血清白蛋白酶切物、6种标准蛋白质混合物酶切物、腾冲嗜热菌蛋白提取液酶切物)的分析结果进行了系统比较。结果表明,引入色谱保留时间后的智能化选择反应监测质谱方法能够显著提高肽段及蛋白质的鉴定量,并且在复杂体系(如腾冲嗜热菌蛋白提取液酶切物)中效果尤为明显,鉴定到的肽段及蛋白质的覆盖率可分别达到目标肽段和蛋白质数量的89.62%和92.41%,并且灵敏度高、重复性好,能够实现对质荷比相同但保留时间有差异的肽段的准确鉴定。该方法将在复杂生物样本目标蛋白质组高通量、高灵敏度的鉴定、验证和确认中发挥独特作用。  相似文献   

16.
梁玉  张丽华  张玉奎 《色谱》2020,38(10):1117-1124
蛋白质组学研究在生物学、精准医学等方面发挥着重要的作用。然而研究面临的巨大挑战来自生物样品的复杂性,因此在质谱(MS)鉴定技术不断革新的同时,发展分离技术以降低样品复杂度尤为重要。毛细管电泳(CE)技术具有上样体积小、分离效率高、分离速度快等优势,其与质谱的联用在蛋白质组学研究中越来越受到关注。低流速鞘流液和无鞘流液接口的发展及商品化推动了CE-MS技术的发展。目前毛细管区带电泳(CZE)、毛细管等电聚焦(CIEF)、毛细管电色谱(CEC)等分离模式已与质谱联用,其中CZE-MS应用最广泛。目前被广泛采用的蛋白质组学研究策略主要是基于酶解肽段分离鉴定的"自下而上(bottom-up)"策略。首先,CE-MS技术对酶解肽段的检测灵敏度高达1 zmol,已成功应用于单细胞蛋白质组学;其次,毛细管电泳技术与反相液相色谱互补,为疏水性质相近的肽段(尤其是翻译后修饰肽段)的分离鉴定提供了新的途径。基于整体蛋白质分离鉴定的自上而下"top-down"策略可以直接获得更精准、更完整的蛋白质信息。CE技术在蛋白质大分子的分离方面具有分离效率高、回收率高的优势,其与质谱的联用提高了整体蛋白质的鉴定灵敏度和覆盖度。非变性质谱(native MS)是一种在近生理条件下从完整蛋白质复合物水平上进行分析的质谱技术。CE与非变性质谱联用已被尝试用于蛋白质复合体的分离鉴定。该文引用了与CE-MS和蛋白质组学应用相关的93篇文献,综述了以上介绍的CE-MS的研究进展以及在蛋白质组学分析中的应用优势,并总结和展望了其应用前景。  相似文献   

17.
This paper addresses the issue of automating the multidimensional chromatographic, signature peptide approach to proteomics. Peptides were automatically reduced and alkylated in the autosampler of the instrument. Trypsin digestion of all proteins in the sample was then executed on an immobilized enzyme column and the digest directly transferred to an affinity chromatography column. Although a wide variety of affinity columns may be used, the specific column used in this case was a Ga(III) loaded immobilized metal affinity chromatography (IMAC) column. Ga(III)-IMAC is known to select phosphorylated peptides. Phosphorylated peptides selected by the affinity column from tryptic digests of milk were automatically transferred to a reversed-phase liquid chromatography (RPLC) column. Further fractionation of tryptic peptides on the RPLC column was achieved with linear solvent gradient elution. Effluent from the RPLC column was electrosprayed into a time-of-flight mass spectrometer. The entire process was controlled by software in the liquid chromatograph. With slight modification, it is possible to add multiple columns in parallel at any of the single column positions to further increase throughput. Total analysis time in the tandem column mode of operation was under 2 h.  相似文献   

18.
Mass spectrometry used in combination with a wide variety of separation methods is the principal methodology for proteomics. In bottom-up approach, proteins are cleaved with a specific proteolytic enzyme, followed by peptide separation and MS identification. In top-down approach intact proteins are introduced into the mass spectrometer. The ions generated by electrospray ionization are then subjected to gas-phase separation, fragmentation, fragment separation, and automated interpretation of mass spectrometric and chromatographic data yielding both the molecular weight of the intact protein and the protein fragmentation pattern. This approach requires high accuracy mass measurement analysers capable of separating the multi-charged isotopic cluster of proteins, such as hybrid ion trap-Fourier transform instruments (LTQ-FTICR, LTQ-Orbitrap). Front-end separation technologies tailored for proteins are of primary importance to implement top-down proteomics. This review intends to provide the state of art of protein chromatographic and electrophoretic separation methods suitable for MS coupling, and to illustrate both monodimensional and multidimensional approaches used for LC-MS top-down proteomics. In addition, some recent progresses in protein chromatography that may provide an alternative to those currently employed are also discussed.  相似文献   

19.
A two-dimensional capillary array liquid chromatography system coupled with matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) was developed for high-throughput comprehensive proteomic analysis, in which one strong cation-exchange (SCX) capillary chromatographic column was used as the first separation dimension and 10 parallel reversed-phase liquid chromatographic (RPLC) capillary columns were used as the second separation dimension. A novel multi-channel interface was designed and fabricated for on-line coupling of the SCX to RPLC column array system. Besides the high resolution based on the combination of SCX and RPLC separation, the developed new system provided the most rapid two-dimensional liquid chromatography (2D-LC) separation. Ten three-way micro-splitter valves used as stop-and-flow switches in transferring SCX fractions onto RPLC columns. In addition, the three-way valves also acted as mixing chambers of RPLC effluent with matrix. The system enables on-line mixing of the LC array effluents with matrix solution during the elution and directly depositing the analyte/matrix mixtures on MALDI plates from the tenplexed channels in parallel through an array of capillary tips. With the novel system, thousands of peptides were well separated and deposited on MALDI plates only in 150min for a complex proteome sample. Compared with common 2D-LC system, the parallel 2D-LC system showed about 10-times faster analytical procedure. In combination with a high throughput tandem time of flight mass spectrometry, the system was proven to be very effective for proteome analysis by analyzing a complicated sample, soluble proteins extracted from a liver cancer tissue, in which over 1202 proteins were identified.  相似文献   

20.
复杂生物体系中蛋白质高效分离分析技术的新进展   总被引:2,自引:0,他引:2  
继人类基因组计划完成之后,作为一种新的研究策略,蛋白质组学在生命科学研究中发挥着愈来愈重要的作用。由于生物体系的复杂性和多样性,使得分离效率高、灵敏度高、通量高和动态范围宽的分离分析技术平台的研究和应用已成为蛋白质组学研究的重点和热点之一。着重介绍了近年来应用日益广泛的多维色谱预分离、毛细管液相色谱-质谱联用、毛细管电泳及其与质谱联用等高效分离分析技术在复杂生物体系的蛋白质分析中的最新进展。引用相关文献40篇。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号