首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We develop improved correlations for two-phase flow friction factor that consider the effect of the relative velocity of the phases, based on a database that includes 2560 gas–liquid flow experiments in horizontal pipes. The database includes a wide range of operational conditions and fluid properties for two-phase friction factor correlations. We classify the experiments by liquid holdup ranges to obtain composite analytical expressions for two-phase friction factor vs. the Reynolds number by fitting logistic dose curves to the experimental data with. We compute the liquid holdup values used to classify the experimental data using correlations proposed previously. The Reynolds number is based on the mixture velocity and the liquid kinematic viscosity. The Fanning friction factor for gas–liquid is defined in term of the mixture velocity and density. Additionally, we sort the experimental data by flow regime and obtain the two-phase friction factor improved correlations for dispersed bubble, slug, stratified and annular flow for different holdup ranges. We report error estimates for the predicted vs. measured friction factor together with standard deviation for each correlation. The accuracy of the correlations developed in this study is compared with that of other 21 correlations and models widely available in the specialized literature. Since different authors use different definitions for friction factors and Reynolds numbers, we present comparisons of the predicted pressure drop for each and every data point in the database. In most cases our correlations predict the pressure drop with much greater accuracy than those presented by previous authors.  相似文献   

2.
3.
Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 96–103, September–October, 1989.  相似文献   

4.
The possible events during bubble formation on an orifice were investigated using a rectangular bubble column (30 cm × 30 cm × 100 cm). The gas flow rate through a single orifice was adjusted from 0.1 dm3/min to 5.0 dm3/min covering a high flow rate regime. At the high gas flow rate, the bubble formation process was complicated by diverse events, such as wake effect, channeling, and orifice-induced turbulent flow. The detachment period could be used to discern the bubble formation steps because it was strongly affected by the above events. The bubble size distribution around the orifice was also analyzed to gain a clearer understanding of the bubble formation process. Above the rate of 3.0 dm3/min through a single orifice, the detachment period converged to a value of 25 ms irrespective of the orifice diameter. The bubble size distribution also showed little difference in this range of gas flow rate. This could be explained by the development of turbulent flow around the orifice. A 0.15 m in-diameter bubble column was tested to investigate the effect of orifice-induced turbulent flow on the regime transition in which the homogeneous flow regime is converted into the heterogeneous flow regime in the column. Obvious distinction between the orifice- and column-induced transitions was observed.  相似文献   

5.
The process of laminar to turbulent transition induced by a von Karman vortex street wake, was studied for the case of a flat plate boundary layer. The boundary layer developed under zero pressure gradient conditions. The vortex street was generated by a cylinder positioned in the free stream. An X-type hot-wire probe located in the boundary layer, measured the streamwise and normal to the wall velocity components. The measurements covered two areas; the region of transition onset and development and the region where the wake and the boundary layer merged producing a turbulent flow. The evolution of Reynolds stresses and rms-values of velocity fluctuations along the transition region are presented and discussed. From the profiles of the Reynolds stress and the mean velocity profile, a ‘negative' energy production region along the transition region, was identified. A quadrant splitting analysis was applied to the instantaneous Reynolds stress signals. The contributions of the elementary coherent structures to the total Reynolds stress were evaluated, for several x-positions of the near wall region. Distinct regions in the streamwise and normal to the wall directions were identified during the transition.  相似文献   

6.
Stereoscopic particle image velocimetry (SPIV) is applied to measure the instantaneous three component velocity field of pipe flow over the full circular cross-section of the pipe. The light sheet is oriented perpendicular to the main flow direction, and therefore the flow structures are advected through the measurement plane by the mean flow. Applying Taylor’s hypothesis, the 3D flow field is reconstructed from the sequence of recorded vector fields. The large out-of-plane motion in this configuration puts a strong constraint on the recorded particle displacements, which limits the measurement accuracy. The light sheet thickness becomes an important parameter that determines the balance between the spatial resolution and signal to noise ratio. It is further demonstrated that so-called registration errors, which result from a small misalignment between the laser light sheet and the calibration target, easily become the predominant error in SPIV measurements. Measurements in laminar and turbulent pipe flow are compared to well established direct numerical simulations, and the accuracy of the instantaneous velocity vectors is found to be better than 1% of the mean axial velocity. This is sufficient to resolve the secondary flow patterns in transitional pipe flow, which are an order of magnitude smaller than the mean flow.  相似文献   

7.
Summary The results of an experimental research on laminar, transition and turbulent flow through sintered bronze metallic filters are here reported. Assuming the square root of the permeability as characteristic dimension of the porous media, all the experimental results — obtained either with air or with water as working fluid — are presented on a plot of the friction factor versus the Reynolds number. A unique value of the characteristic constant allows a good fit for both fluids.
Sommario Si presentano i risultati di una ricerca sperimentale sul moto di filtrazione in regime laminare, di transizione e turbolento attraverso filtri metallici di bronzo sinterizzato. Assumendo la radice quadrata della permeabilità quale dimensione caratteristica degli elementi porosi, tutti i risultati ottenuti — sperimentando sia con aria che con acqua — vengono correlati in funzione del fattore di attrito e del numero di Reynolds, con un unico valore della costante caratteristica dei mezzi porosi.

  相似文献   

8.
Fluid-surface interaction, is very much influenced by the flow distribution and the flow spectra. For biological surfaces, cell functions such as mytosis and cell turnover, can be triggered by the instantaneous flow fluctuations which induce augmented shear stress levels inside the wall surface boundary layer. The objective of this work is to study the flow field along a cellular surface and to understand the interaction process. For that purpose, a cone and plate apparatus was built in which the transitional and turbulent instantaneous flow field characteristics, especially near the plate surface, were investigated using spatial hot wire anemometry, concentrating on time domain and spectral analysis. The frequency spectrum of velocity fluctuations near the plate is influenced by the plate roughness. We found that there is a linear relation between wall roughness and the preferred frequencies of the spectra. In addition a universal law exists for mean velocities, similar to the logarithmic law of the wall, when normalized by 1/2, the apparatus Reynolds number. Received: 31 March 1998/Accepted: 11 January 1999  相似文献   

9.
The effect of riblets on laminar to turbulent transition   总被引:2,自引:0,他引:2  
Experiments conducted on the effect of riblets on the laminar-to-turbulent transition of a flat plate in a water tunnel are reported. Transition was determined using a Laser Doppler Velocimeter (LDV). A smooth reference surface was compared to five riblet surfaces for a range of Reynolds numbers. Smooth surface transition Reynolds number was about 2.75 × 106. All of the five tested riblet surfaces had lower transition Reynolds numbers. A critical roughness Reynolds number of about 6 was determined for one of the riblet surfaces. This is much lower than the generally accepted value of 25, considered safe for distributed roughness.  相似文献   

10.
The time-split finite element method is extended to compute laminar and turbulent flows with and without separation. The examples considered are the flows past trailing edges of a flat plate and a backward-facing step. Eddy viscosity models are used to represent effects of turbulence. It is found that the time-split method produces results in agreement with previous experimental and computational results. The eddy viscosity models employed are found to give accurate predictions in all regions of flow except downstream of reattachment.  相似文献   

11.
12.
13.
Laser-Doppler measurements of laminar and turbulent flow in a pipe bend   总被引:3,自引:0,他引:3  
Laser-Doppler measurements are reported for laminar and turbulent flow through a 90° bend of circular cross-section with mean radius of curvature equal to 2.8 times the diameter. The measurements were made in cross-stream planes 0.58 diameters upstream of the bend inlet plane, in 30, 60 and 75° planes in the bend and in planes one and six diameters downstream of the exit plane. Three sets of data were obtained: for laminar flow at Reynolds numbers of 500 and 1093 and for turbulent flow at the maximum obtainable Reynolds number of 43 000. The results show the development of strong pressure-driven secondary flows in the form of a pair of counter-rotating vortices in the streamwise direction. The strength and character of the secondary flows were found to depend on the thickness and nature of the inlet boundary layers, inlet conditions which could not be varied independently of Reynolds number. The quantitative anemometer measurements are supported by flow visualization studies. Refractive index matching at the fluid-wall interface was not used; the measurements consist, therefore, of streamwise components of mean and fluctuating velocities only, supplemented by wall pressure measurements for the turbulent flow. The displacement of the laser measurement volume due to refraction is allowed for in simple geometrical calculations. The results are intenden for use as benchmark data for calibrating flow calculation methods.  相似文献   

14.
15.
Transition from laminar to turbulent flow in liquid filled microtubes   总被引:8,自引:0,他引:8  
The transition to turbulent flow is studied for liquids of different polarities in glass microtubes having diameters between 50 and 247 µm. The onset of transition occurs at Reynolds numbers of ~1,800–2,000, as indicated by greater-than-laminar pressure drop and micro-PIV measurements of mean velocity and rms velocity fluctuations at the centerline. Transition at anomalously low values of Reynolds number was never observed. Additionally, the results of more than 1,500 measurements of pressure drop versus flow rate confirm the macroscopic Poiseuille flow result for laminar flow resistance to within –1% systematic and ±2.5% rms random error for Reynolds numbers less than 1,800.An erratum to this article can be found at  相似文献   

16.
17.
This paper attempts to reproduce numerically previous experimental findings with opposed flows and extends their range to quantify the effects of upstream pipes and nozzles with inviscid, laminar and turbulent flows. The choice of conservation equations, boundary conditions, algorithms for their solution, the degree of grid dependence, numerical diffusion and the validity of numerical approximations are justified with supporting calculations where necessary. The results of all calculations on the stagnation plane show maximum strain rates close to the annular exit from the nozzles and pipes for lower separations and it can be expected that corresponding reacting flows will tend to extinguish in this region with the extinction moving towards the axis. With laminar flows, the maximum strain rate increased with Reynolds number and the maximum values were generally greater than with inviscid flows and smaller than with turbulent flows. With large separations, the strain rates varied less and this explains some results with reacting flows where the extinction appeared to begin on the axis. The turbulent‐flow calculations allowed comparison of three common variants of a two‐equation first‐moment closure. They provided reasonable and useful indications of strain rates but none correctly represented the rms of velocity fluctuations on the axis and close to the stagnation plane. As expected, those designed to deal with this problem produced results in better agreement with experiment but were still imperfect. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
19.
20.
An experimental study of friction reduction and polymer degradation in turbulent pipe flow is described for dilute water solutions of guar gum, CMC, Separan NP-10 and Polyox WSR-301. The tests are made in a turbulent-flow rheometer with a 2 mm I.D. pipe over a Reynolds number range from 8,000 to 25,000. The maximum attainable friction reduction for guar gum, Separan NP-10 and Polyox WSR-301 is found to be almost equal, but large differences in effectiveness occur. The most effective polymers (Polyox WSR-301 and Separan NP-10) are also the most liable to degradation. Mixing of polymers does not ameliorate the maximum friction reducing ability of the most effective component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号