首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Structural, electrical and magnetic measurements of polycrystalline CuCrxVySe4 spinels with x=1.79, 1.64 and 1.49 and y=0.08, 0.22 and 0.45, respectively, are presented. The compounds under study crystallize in regular system of a normal spinel type MgAl2O4 structure with the space group symmetry Fd3m. The chromium spins are coupled ferromagnetically and show both strong long- and short-range magnetic interactions evidenced by the large values of the Curie (TC) and Curie–Weiss (θCW) temperatures, decreasing from TC=407 K and θCW=415 K for y=0.08, via TC=349 K and θCW=367 K for y=0.22 to TC=283 K and θCW=293 K for y=0.45, respectively. In all the studied spinels a change of the electrical conductivity character from the semiconductive into the metallic one above 230 K was observed. A detailed thermoelectric power analysis showed a domination of diffusion thermopower component, maximum of phonon drag component at 230 K, a decrease of impurity component with increasing V content, as well as the weak magnon excitations at 40 K.  相似文献   

2.
3.
《Solid State Ionics》2009,180(40):1607-1612
A new glassy solid electrolyte system CuxAg1  xI–Ag2O–V2O5 has been synthesized. The structural, thermal and electrical properties of the samples have been investigated. The glassy nature of the samples is confirmed by X-Ray diffraction and Differential Scanning Calorimetry studies. The electrical conductivity of these samples increases with CuI content and approaches a maximum value of ∼ 102 Ω 1 cm 1 for x = 0.35 at room temperature. Ionic mobility measurements suggest that enhancement in the conductivity with Cu+ ion substitution may be attributed to increase in the mobility of Ag+ ions. The electrical conductivity versus temperature cycles carried out at well-controlled heating rate above Tg and Tc reveal interesting thermal properties. For lower CuI content samples conductivity exhibits anomalous rise above Tg and subsequent fall at Tc. It is also found that CuI addition into AgI–Ag2O–V2O5 matrix reduces the extent of crystallization.  相似文献   

4.
AC impedance measurements have been carried out on (NH4)2SO4 single crystals for the temperatures from 300 to 473 K and frequency range between 100 Hz and 4 MHz. The results reveal two distinct relaxation processes in the sample crystal. One is the dipolar relaxation with a peak at frequency slightly higher than 4 × 106 Hz. The other is the charge carrier relaxation at lower frequencies. The frequency dependence of conductivity is described by the relation σ(ω) = n, and n = 1.32 is obtained at temperatures below 413 K. This value drops to 0.2 and then decreases slightly with increasing temperature. The dipolar response of the (NH4)2SO4 single crystal under an ac field is attributed to the reorientation of dipoles. The contribution of charge carriers is increasing substantially with increasing temperature at temperatures above 413 K. The temperature variation of conductivity relaxation peaks follows the Arrhenius relation. The obtained activation energy for migration of the mobile ions for (NH4)2SO4 single crystal was 1.24 eV in the temperature range between 433 and 468 K in this intrinsic region. It is proposed that the NH4+ in the sample crystal has the contribution to the electrical conduction.  相似文献   

5.
Among the perovskite manganites, a series of La1?xCaxMnO3 has the largest magneto-caloric effect (MCE) (|ΔSm|max=3.2–6.7 J/kg K at ΔH=13.5 kOe), but the Curie temperatures, TC, are quite low (165–270 K). The system of LaSrMnO3 has quite high TC but its MCE is not so large. The manganites La0.7(Ca1?xSrx)0.3MnO3 (x=0, 0.05, 0.10, 0.15, 0.20, 0.25) have been prepared by solid state reaction technique with an expectation of large MCE at room temperature region. The samples are of single phase with orthorhombic structure. The lattice parameters as well as the volume of unit cell are continuously increased with the increase of x due to large Sr2+ ions substituted for smaller Ca2+ ions. The field-cooled (FC) and zero-field-cooled (ZFC) thermomagnetic measurements at low field and low temperatures indicate that there is a spin-glass like (or cluster glass) state occurred. The Curie temperature TC increases continuously from 258 K (for x=0) to 293 K (for x=0.25). A large MCE of 5 J/kg K has been observed around 293 K at the magnetic field change ΔH=13.5 kOe for the sample x=0.25. The studied samples can be considered as giant magneto-caloric materials, which is an excellent candidate for magnetic refrigeration at room temperature region.  相似文献   

6.
AC susceptibility and DC magnetization measurements were performed for the RPdIn (R=Gd–Er) compounds both in the paramagnetic and in the ordered state. In opposite to GdPdIn, which is a ferromagnet (Tc=102 K), the other samples show a complex ferrimagnetic behavior with the additional transition at Tt<Tc. In the high-temperature phase (for Tt<T<Tc), a ferromagnetic interaction dominates, while in the low-temperature phase (for TTt) antiferromagnetic interactions with the magnetocrystalline anisotropy, especially strong for TbPdIn, come into play. The ordering temperatures are Tc=70, 34, 25 and 12.3 K for Tb-, Dy-, Ho- and ErPdIn respectively, while transition temperatures are Tt=6, 14 and 6 K for Tb-, Dy- and HoPdIn respectively. TbPdIn reveals an additional transition at 27 K connected with the intermediate ferrimagnetic phase. The critical fields for the magnetization process of the low-temperature phase are high (52 and 150 kOe for TbPdIn and 32 kOe for DyPdIn at T=4.2 K) yet these values decrease remarkably with increasing temperature. Results of the study are compared with magnetic and neutron diffraction data hitherto available. We state that irreversibility of the zero-field cooled–field cooled magnetization is not connected with the spin-glass phase claimed elsewhere.  相似文献   

7.
J.-H. Kim  A. Manthiram 《Solid State Ionics》2009,180(28-31):1478-1483
Perovskite-related intergrowth oxides Sr2.7Ln0.3Fe1.4Co0.6O7 ? δ (Ln = La, Nd, Sm, and Gd) have been investigated as cathode materials for solid oxide fuel cells (SOFC). With decreasing size of the Ln3+ ions, the unit cell volume, oxygen content, thermal expansion coefficient (TEC), and total electrical conductivity decrease from Ln = La to Gd. The decreasing unit cell volume and oxygen content is attributed to the decreasing size of Ln3+ ions from Ln = La to Gd and a consequent preference for lower coordination numbers. While the decrease in the ionicity of the Ln–O bonds from Ln = La to Gd causes a decrease in the TEC, the increasing amount of oxygen vacancies leads to a decrease in electrical conductivity arising from a thermally activated semiconducting behavior. The cathode polarization conductance (Rp? 1) measured using the ac-impedance spectroscopy and the catalytic activity for the oxygen reduction reaction in SOFC decrease from Ln = La to Gd partly due to the decrease in electrical conductivity.  相似文献   

8.
《Solid State Ionics》2006,177(15-16):1317-1322
We have synthesized the perovskite oxides of the (Ba0.3Sr0.2La0.5)(In1−xFex)O3−δ system and measured the total electrical conductivity as a function of temperature and oxygen partial pressure. It was found that the single-phase composition region extended from x = 0.0 to x = 1.0, and that the Fe valence increased from 3.06 to 3.50 in that region. The electrical conductivity was semiconducting from x = 0.0 to x = 0.40 and metallic from x = 0.50 to x = 1.0. The total electrical conductivity at 800 °C also increased with the Fe content and achieved a maximum value of 140 (S/cm) at x = 1.0. From the dependence of the electrical conductivity on the oxygen partial pressure, we conclude that above x = 0.50, the majority carriers are holes. The estimated hole conductivity increased exponentially with the amount of Fe4+ cation present. The oxide ion conductivity was dependent on the oxygen vacancy content.  相似文献   

9.
《Current Applied Physics》2010,10(3):866-870
Perovskite La1−xSrxFeO3 (0.10  x  0.20) ceramics have been synthesized by the conventional solid-state reaction technique. Their electrical resistivity, Seebeck coefficient and thermal conductivity have been measured. It has been found that the increase of Sr content reduces significantly both the electrical resistivity and the Seebeck coefficient, but slightly increases the high-temperature thermal conductivity. An adiabatic hopping conduction mechanism of small polaron is suggested from the analysis of the temperature dependence of the electrical resistivity. Seebeck coefficients decrease with increasing temperature, and saturate at temperature above 573 K. The saturated value of Seebeck coefficient decreases with increasing of Sr contents, from 200 μV/K for x = 0.10 to 100 μV/K for x = 0.20. All samples exhibit lower thermal conductivity with values around 2.6 W/m K. The highest dimensionless figure of merit is 0.031 at temperature 973 K in La0.88Sr0.12FeO3.  相似文献   

10.
《Solid State Ionics》2006,177(19-25):1883-1886
We have carried out the electrical conductivity and NMR measurements and investigated the characteristic features of the electrical conductivity in a paraelastic phase of Tl2SeO4. It was found from electrical conductivity measurement that the activation energy in the paraelastic phase (above Tc(= 661 K)) is 0.98 eV. We also found that 205Tl-NMR line width drastically decreases above Tc and becomes approximately 0.5 Gauss. This result indicates that in the paraelastic phase the mobile Tl ions exist. Moreover this result is consistent with the existence of the anomalously large hopping motion of Tl ions observed in X-ray diffraction measurement. Furthermore the activation energy estimated from the motional narrowing of 205Tl-NMR absorption line is 0.92 eV and is in agreement with that obtained from the conductivity measurement. From these results, it is deduced that the mobile Tl ions play an important role in the appearance of electrical conductivity in the paraelastic phase.  相似文献   

11.
《Solid State Ionics》2006,177(26-32):2585-2588
Electronically conducting glasses of the composition xV2O5·(100  x)P2O5 for 60 < x < 90 were prepared. The glasses of the composition corresponding to x = 90 exhibited the highest electrical conductivity and they were studied in more detail. The effects of the annealing of the samples on their electrical conductivity, structure and other characteristics were studied by impedance spectroscopy, X-ray diffractometry, DSC and SEM microscopy. It was shown that, at temperatures close to the crystallization temperature Tc (determined from DSC), these glasses turned into nanomaterials consisting of crystalline grains of V2O5 (average size 25–35 nm) embedded in the glassy matrix. Their electrical conductivity was higher and the temperature stability was better than those of the starting glasses. It is postulated that the major role in this conductivity enhancement is played by the interfacial regions between crystalline and amorphous phases. The annealing at temperatures exceeding Tc led to massive crystallization and to a conductivity drop. The XRD and SEM observations have shown that the material under study undergoes structural changes: from amorphous at the beginning, to partly crystalline after the annealing at 340 °C and to polycrystalline after the annealing at 530 °C.The obtained results are in agreement with those of our earlier studies on mixed electronic–ionic conducting glasses of the ternary Li2O–V2O5–P2O5 system.  相似文献   

12.
In the present work, the synthesis and characterization of the Bis(4-acetylanilinium) tetrachlorocuprate(II) compound are presented. The structure of this compound is analyzed by X-ray diffraction which confirms the formation of single phase and is in good agreement the literature. Indeed, the Thermo gravimetric Analysis (TGA) shows that the decomposition of the compound is observed in the range of 420–520 K. However, the differential thermal analysis (DTA) indicates the presence of a phase transition at T=363 k. Furthermore, the dielectric properties and AC conductivity were studied over a temperature range (338–413 K) and frequency range (200 Hz–5 MHz) using complex impedance spectroscopy. Dielectric measurements confirmed such thermal analyses by exhibiting the presence of an anomaly in the temperature range of 358–373 K. The complex impedance plots are analyzed by an electrical equivalent circuit consisting of resistance, constant phase element (CPE) and capacitance. The activation energy values of two distinct regions are obtained from log σT vs 1000/T plot and are found to be E=1.27 eV (T<363 K) and E=1.09 eV (363 K<T).The frequency dependence of ac conductivity, σac, has been analyzed by Jonscher's universal power law σ(ω)=σdc+s. The value of s is to be temperature-dependent, which has a tendency to increase with temperature and the non-overlapping small polaron tunneling (NSPT) model is the most applicable conduction mechanism in the title compound.  相似文献   

13.
We report on a comparative study of S(T) for a series of transition-metal double-perovskites A2BB′O6 (A – Ca, Sr, Ba, and B, B′ = transition metal ions), some of them known to have half-metallic ground states. For Sr2BB′O6 with BB′ = CrMo, CrW, CrRe, FeMo, and FeRe (ferrimagnetic with high Curie temperatures), S(T) is metallic, for B′ = Mo and W it is n-type and for B′ =  Re, p-type. For A2FeMoO6 (A = Ca, Sr, Ba), the crystallographic differences (monoclinic, tetragonal and cubic space-groups, respectively) are accompanied by prominent differences in their (metallic) S(T). For the insulating Sr2MnReO6 and Ba2MnReO6, the onset of ferromagnetic order below Tc  120 K is marked by a steep drop of S(T) accompanied by only a slight change in the slope of ln ρ versus 1/T1/2. Significant conclusions were drawn from the experimental results without the need for elaborate models.  相似文献   

14.
《Solid State Ionics》2006,177(37-38):3285-3296
Oxygen nonstoichiometry, structure and transport properties of the two compositions (La0.6Sr0.4)0.99CoO3−δ (LSC40) and La0.85Sr0.15CoO3−δ (LSC15) were measured. It was found that the oxygen nonstoichiometry as a function of the temperature and oxygen partial pressure could be described using the itinerant electron model. The electrical conductivity, σ, of the materials is high (σ > 500 S cm 1) in the measured temperature range (650–1000 °C) and oxygen partial pressure range (0.209–10 4 atm). At 900 °C the electrical conductivity is 1365 and 1491 S cm 1 in air for LSC40 and LSC15, respectively. A linear correlation between the electrical conductivity and the oxygen vacancy concentration was found for both samples. The mobility of the electron-holes was inversely proportional with the absolute temperature indicating a metallic type conductivity for LSC40. Using electrical conductivity relaxation the chemical diffusion coefficient of oxygen was determined. It was found that accurate values of the chemical diffusion coefficient could only be obtained using a sample with a porous surface coating. The porous surface coating increased the surface exchange reaction thereby unmasking the chemical diffusion coefficient. The ionic conductivity deduced from electrical conductivity relaxation was determined to be 0.45 S cm 1 and 0.01 S cm 1 at 1000 and 650 °C, respectively. The activation energy for the ionic conductivity at a constant vacancy concentration (δ = 0.125) was found to be 0.90 eV.  相似文献   

15.
The magnetic and electrical properties of polycrystalline Pr1?xAxCoO3 cobaltites with A=Ca, Sr and 0≤x≤0.5 were studied in the temperature range 4 K≤T≤1000 K and field up to 7 T. The X-ray analyses show the presence of only one phase having monoclinic or orthorhombic symmetry. The magnetic measurements indicate that the Ca-doped samples have at low temperatures, similar properties to the frustrated magnetic materials. PrCoO3 is a paramagnetic insulator in the range from 4 to 1000 K. The Sr-doped cobaltites exhibit two phase transitions: a paramagnetic–ferromagnetic (or magnetic phase separated state) phase transition at about 240 K and a second one at about 100 K. The magnetic measurements suggest the presence of magnetic clusters and a change in the nature of magnetic coupling between Co ions at low temperatures. A semiconducting type behavior and high negative magnetoresistance was found for the Ca-doped samples, while the Sr-doped ones were metallic and with negligible magnetoresistance. The results are analyzed in the frame of a phase separation scenario in the presence of the spin-state transitions of Co ions.  相似文献   

16.
《Solid State Ionics》2006,177(26-32):2503-2507
The temperature and the oxygen partial pressure dependences of the electron and hole conductivities were measured by the dc polarization method using a Hebb–Wagner's ion blocking cell for Gd0.2Ce0.8O1.9 polycrystalline bodies with grain size of 0.5 μm prepared by sintering of nano-sized powder. A significant enrichment of gadolinium was observed in the vicinity of the grain boundary by TEM/EDS analyses. The electron conductivity were comparable with those of conventional Gd0.2Ce0.8O1.9 polycrystalline body with grain size of 2 μm, and it followed p(O2) 1/4 dependence at temperatures T = 973–1273 K. However, the observed hole conductivity was higher than that of conventional Gd0.2Ce0.8O1.9, and it did not follow p(O2)1/4 dependence. This anomalous p(O2) dependence disappeared after the sample was treated at T = 1773 K for 38 h and grain size was enlarged to 2–10 μm.  相似文献   

17.
《Solid State Ionics》2006,177(1-2):89-93
The differential scanning calorimetry diagram of [Li0.2(NH4)0.8]2TeCl6 showed one anomaly at 526 K accompanied with a shoulder at 505 K.The conductivity plot exhibits two anomalies at 496 and 526 K, which characterize the beginning and the end of the crossing to superionic conductor state. The low temperature conduction is ensured essentially by Li+. A sudden jump confirms the presence of a superionic protonic transition related to the fast motion of Li+ and H+ ions. Above 526 K, the high temperature phase is characterized by high electrical conductivity (10 3 Ω 1 m 1) and low activation energy (Ea < 0.3 eV).The dielectric constant evolution as a function of frequency and temperature revealed the same anomaly.Transport properties in this material appear to be due to Li+ and H+ ions' hopping mechanism.  相似文献   

18.
Substitution of Ge4+ in place of Cu in Tl0.85Cr0.15Sr2CaCu2?xGexO7?δ (x = 0–0.6) showed initial increase in zero critical temperature value, Tc zero from 98 K (x = 0) to 100 K (x = 0.1) and in the range of 85–86 K for x = 0.2–0.3. The slow decrease in Tc zero is unexpected as tetravalent Ge4+ substitution is expected to strongly reduce hole concentration in the samples and suppress Tc zero. Excess conductivity analyses of resistance versus temperature data based on Asmalazov–Larkin (AL) theory revealed that the substitution induced 2D-to-3D transition of fluctuation induced conductivity with the highest transition temperature, T2D3D observed at x = 0.1. FTIR spectroscopy analysis indicates Ge4+ substitution cause reduction in CuO2/GeO2 interplanar distance while our calculation based on Lawrence–Doniach model revealed highest superconducting coherence length, ξc(0) and interplanar coupling, J at x = 0.3. On the other hand, substitution of divalent Mg2+ for Ca2+ in (Tl0.5Pb0.5)(Sr1.8Yb0.2)(Ca1?yMgy)Cu2O7 (y = 0–1.0), which is not expected to directly vary hole concentration, surprisingly caused Tc zero to increase from 89.6 K (y = 0) to an optimum value of 95.9 K (y = 0.6) before decreasing with further increase in y. Excess conductivity analyses showed 2D-to-3D transition of fluctuation induced conductivity for all samples where the highest T2D3D was at y = 0.4. Similar calculation revealed highest values of ξc(0) and J also at y = 0.4. FTIR analysis of the samples indicates inequivalent Cu(1)O(2)Pb/Tl lengths and possible tilting of CuO2 plane as a result of Mg2+ substitution. The increased ξc(0) and J as a result of the Ge4+ and Mg2+ substitutions are suggested to contributed to sustenance of superconductivity above 80 K in the samples.  相似文献   

19.
We have studied the effect of negative chemical pressure in the RuGd1.5(Ce0.5?xPrx)Sr2Cu2O10?δ with Pr content of 0.0 ? x ? 0.2. This is also investigated using the bond length results obtained from the Rietveld refinement analysis. The c parameter and cell volume increase with x for 0.0 ? x ? 0.15. The width of the resistivity transition also increases with Pr concentration, indicating higher inhomogeneity and oxygen deficiency. The difference in the ionic valences of Pr3+,4+ and Ce4+ causing different hole doping, the difference in the ionic radii, and oxygen stoichiometry affect the superconducting transition. The magnetoresistance shows a cusp around 135 K which lies between the antiferromagnetic and ferromagnetic transition temperatures, which is probably due to the presence of a spin glass region. There exist two magnetic transition temperatures for 0.0 ? x ? 0.2 which respectively change from TM = 155 K to 144 K and from Tirr = 115 K to 70 K. The magnetization versus applied magnetic field isotherms at 77 K and 300 K show that the remanent magnetization and coercivity are lower for samples with higher Pr content.  相似文献   

20.
Magnetic properties and magnetocaloric effects (MCEs) of the intermetallic Ho3Al2 compound are investigated by magnetization and heat capacity measurements. Two successive magnetic transitions, a spin-reorientation (SR) transition at TSR=31 K followed by a ferromagnetic (FM) to paramagnetic (PM) transition at TC=40 K, are observed. Both magnetic transitions contribute to the MCE and result in a large magnetic entropy change (ΔSM) in a wide temperature range. The maximum values of ?ΔSM and adiabatic temperature change (ΔTad) reach 18.7 J/kg K and 4.8 K for the field changes of 0–5 T, respectively. In particular, a giant value of refrigerant capacity (RC) is estimated to be 704 J/kg for a field change of 5 T, which is much higher than those of many potential refrigerant materials with similar transition temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号