首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Solid State Ionics》2006,177(26-32):2715-2720
In recent years many new glass-based solid electrolytes with high Li+ conductivity have been developed. In the present paper, we review the preparation and characterization of Li2S-based oxysulfide glasses and sulfide glass-ceramics on the basis of two strategies of enhancing Li+ conductivity: the utilization of “mixed-anion effect” by combining sulfide and oxide anions, and the precipitation of superionic metastable crystals by careful heat-treatment of glasses. The superior Li+ conducting solid electrolytes with the highest conductivity and the lowest activation energy for conduction have been achieved in the Li2S–P2S5 glass-ceramics. The use of these glass-ceramic solid electrolytes leads to the development of a bulk-type all solid-state lithium secondary battery with excellent cycling performance.  相似文献   

2.
《Solid State Ionics》2006,177(9-10):843-846
We have synthesized poly(ethylene glycol) (PEG)-aluminate ester as a plasticizer for solid polymer electrolytes. The thermal stability, ionic conductivity and electrochemical stability of the polymer electrolyte which consist of poly(ethylene oxide) (PEO)-based copolymer, PEG–aluminate ester and lithium bis-trifluoromethanesulfonimide (LiTFSI) were investigated. Addition of PEG–aluminate ester increased the ionic conductivity of the polymer electrolyte, showing greater than 10 4 S cm 1 at 30 °C. The polymer electrolyte containing PEG–aluminate ester retained thermal stability of the non-additive polymer electrolyte and exhibited electrochemical stability up to 4.5 V vs. Li+/Li at 30 °C.  相似文献   

3.
Adsorption of two anions (F and Cl) and two cations (Li+ and Na+) on the surface of aluminum nitride nanotubes (AlNNTs) is investigated by density functional theory. The reactions are site-selective, so that the cations and anions prefer to be adsorbed atop the N and Al atoms of the tube surface, respectively. The adsorption energies of anions (−4.46 eV for F and −1.12 eV for Cl) are much higher than those of cations (about −0.17 eV for Li+ and −0.12 eV for Na+) which can be explained using frontier molecular orbital theory. It was found that the adsorption of anions may facilitate the electron emission from the AlNNT surface by reducing the work function due to the charge transfer occurs from the anions to the tube. It has been predicted that in contrast to the cations the adsorption of anions also obviously increases the electrical conductivity of AlNNT.  相似文献   

4.
《Solid State Ionics》1987,25(1):41-44
Complexes of alkali metal salts with various polymers have for some time been recognized as fast ionic conductors. Polymer electrolyte fast ion conductors are currently under consideration for use in high energy density electrochemical cells. In order to aid in our understanding of the mechanism of ionic conductivity we have examined systematically complexes of poly(ethylene oxide) (PEO) with the alkali metal salt series of Li+, Na+, K+, Rb+ and Cs+ with both tetraflouroborate (BF4-) and trifluoromethanesulfonate (CF3SO4-) anions. The ratio of monomer to salt was 10:1 in all cases. Complex impedance measurements were made on all samples in the temperature range 40°–125°C. With CF3SO4- as the anion a definite trend was apparent with the smallest cation Li+ being the worst conductor and Cs+, the largest cation, being the best. When BF4- salts are used, the Na+ complex is found to be the best conductor and Rb+ the worst. This study, in connection with our earlier studies, has shown that synergy between cation and anion in the polymer matrix is an important consideration in determining the ionic conductivity.  相似文献   

5.
Andrzej Eilmes   《Solid State Ionics》2008,179(13-14):458-464
Quantum-chemical calculations on model ester molecules have been performed to study the interactions of carbonyl groups with lithium cation. The preferred conformations of the complexes and their stabilization energies have been determined. The largest complexation energy has been obtained for Li+ binding to four carbonyl groups. The vibrational frequency calculations have been used to predict the changes in the IR spectrum of polyester upon Li+ complexation. For the most stable complex the red-shift of about − 29 to − 24 cm− 1 in the frequency of the C=O stretching mode has been calculated in a good agreement with the experimental value [I.D. Wu, F. C. Chang, Polymer 48 (2007) 989].  相似文献   

6.
The electron-stimulated desorption of Li+ ions from lithium layers adsorbed on the tantalum surface coated with a silicon film has been investigated. The measurements are performed using a static magnetic mass spectrometer equipped with an electric field-retarding energy analyzer. The threshold of the electron-stimulated desorption of lithium ions is close to the ionization energy of the Li 1s level. The secondary thresholds are observed at energies of about 130 and 150 eV. The threshold at an energy of 130 eV is approximately 30 eV higher than the ionization energy of the Si 2p level and can be associated with the double ionization. The threshold at 150 eV can be caused by the ionization of the Si 2s level. It is demonstrated that the yield of Li+ ions does not correlate with the silicon amount in near-the-surface region of the tantalum ribbon and drastically increases at high annealing temperatures. The dependence of the current of Li+ desorption on the lithium concentration upon annealing of the tantalum ribbon at T>1800 K exhibits two maxima. The ions desorbed by electrons with energies higher than 130 and 150 eV make the largest contribution to the current of lithium ions after the annealing. The yield of lithium ions upon ionization of the Li 1s level at an energy of 55 eV is considerably lesser, but it is observed at higher concentrations of deposited lithium. The results obtained can be interpreted in the framework of the Auger-stimulated desorption model with allowance made for relaxation of the local surface field.  相似文献   

7.
To understand the interaction of lithium (Li+) with a coadministered drug in both the blood and the brain, we have treated rats with either Li+ alone or Li+ and a codrug. In this paper we address the important problem of quantitation of intra and extracellular Li+ ion contents in blood by the 7Li-NMR technique and the use of a shift reagent (SR). Although Li+ can be studied by atomic absorption techniques, these techniques involve tedious separation of intra- and extracellular components prior to chemical analysis. Magnetic resonance studies on rat blood, in the dose range of 0.5 to 10 meq/kg, indicate that the intracellular red blood cell Li+ predominates in the lower dose range of 0.5–1.0 meq/kg. As the lithium dose increases, a significantly larger amount of Li+ accumulates in the extracellular volume. Our studies on a number of animals at various doses of LiCl indicate that 7Li-NMR of blood samples provide a reliable, noninvasive quantification of red blood cell and plasma Li+ concentrations. The NMR method was further used to study the effect of coadministered drugs such as thioridazine on the intra- and extracellular Li+ concentration of RBCs.  相似文献   

8.
We have investigated the ground state and the doubly excited 1,3P resonance states of plasma-embedded Li+ ion. The plasma effect is taken care of by using a screened Coulomb potential obtained from the Debye model. A correlated wave function has been used to represent the correlation effect between the charged particles. The ground state of Li+ in plasmas for different screening parameters has been estimated in the framework of Rayleigh-Ritz variational principle. In addition, a total of 18 resonances (9 each for 1P and 3P states) below the n=2 Li+ thresholds has been estimated by calculating the density of states using the stabilization method. For each spin state, this includes four members in the 2snp+ (2≤n ≤5) series, three members in the 2snp- (3≤n ≤5) series, and two members in the 2pnd (n=3, 4) series. The resonance energies and widths for various Debye parameters ranging from infinity to a small value for these 1,3P resonance states along with the ground state energies of Li+ and the Li2+ (1S), Li2+ (2S) threshold energies are reported. Furthermore, the wavelengths for the photo-absorption of lithium ion from its ground state to such 1P resonance states for different Debye lengths are also reported.  相似文献   

9.
Combination of LiBH4 and LiNH2 by ball milling forms the series of novel complex hydrides Li2BNH6, Li3BN2H8 and Li4BN3H10, depending on the combination ratios. The crystal structure of Li4BN3H10 analyzed by synchrotron X-raydiffraction measurements is determined to be a cubic system (space group: I213) with the lattice constant of a=10.673(2)Å. It should be emphasized that Li4BN3H10 is an ionic crystal which is composed of a lithium cation Li+ and two different kinds of the complex anion [BH4]- and [NH2]-. These anions are located in the vertex and face-center of the cubic sub-lattice, and the lithium cation Li+ in the interstitial site between the anions, respectively. The other series of complex hydrides, Li2BNH6 and Li3BN2H8, are also predicted to possess similar structures composed of a lithium cation Li+ and two different kinds of the complex anion [BH4]- and [NH2]-.  相似文献   

10.
The transport of the lithium ions is the basis of lithium ion conductivity of currently used electrolytes. Understanding how the transport of lithium ions within the matrix is influenced by the interactions with solvating moieties is needed to improve their performance. Along these lines well-defined model compounds based on cyclotriphosphazene (CTP) and hexaphenylbenzene (HPB) cores, bearing side groups of ethylene carbonate, a common solvent for lithium salts used as electrolytes in Li-ion batteries (Thielen et al. Chem. Mater, 23, 2120, 2011) and blended with different amounts of Lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) have been studied by multinuclear nuclear magnetic resonance (NMR) spectroscopy. The local dynamics of the matrix was probed by 1H and 31P NMR, while the local dynamics of the Li+ cations was unraveled by 7Li and 13C NMR. Transport of both ions was studied by pulsed-field gradient (PFG) NMR. Based on the different temperature dependences of the dynamics the bulk ion transport is not attributed to local dynamics, but to translational diffusion best characterized by PFG NMR. Although the glass transition temperatures of the blends are low, their conductivities are only in the range of typical polymer electrolytes. The results of NMR spectroscopy are in accord with the conjecture that the coordination between the cyclic carbonate functionality and the Li+-ion is too tight to allow for fast ion dynamics.  相似文献   

11.
Local environments and dynamics of lithium ions in the binary lithium silicide Li13Si4 have been studied by 6Li MAS-NMR, 7Li spin-lattice relaxation time and site-resolved 7Li 2D exchange NMR measurements as a function of mixing time. Variable temperature experiments result in distinct differences in activation energies characterizing the transfer rates between the different lithium sites. Based on this information, a comprehensive picture of the preferred ionic transfer pathways in this silicide has been developed. With respect to local mobility, the results of the present study suggests the ordering Li6/Li7>Li5>Li1>Li4 >Li2/Li3. Mobility within the z=0.5 plane is distinctly higher than within the z=0 plane, and the ionic transfer between the planes is most facile via Li1/Li5 exchange. The lithium ionic mobility can be rationalized on the basis of the type of the coordinating silicide anions and the lithium-lithium distances within the structure. Lithium ions strongly interacting with the isolated Si4− anions have distinctly lower mobility than those the coordination of which is dominated by Si26− dumbbells.  相似文献   

12.
Electron-stimulated desorption of positive lithium ions from thin layers of lithium halides deposited onto Si(1 1 1) are investigated by the time-of-flight technique. The determined values of isotope effect of the lithium (6Li+/7Li+) are 1.60 ± 0.04, 1.466 ± 0.007, 1.282 ± 0.004, 1.36 ± 0.01 and 1.33 ± 0.01 for LiH, LiF, LiCl, LiBr and LiI, respectively. The observed most probable kinetic energies of 7Li+ are 1.0, 1.9, 1.1, 0.9 and 0.9 eV for LiH, LiF, LiCl, LiBr and LiI, respectively, and seem to be independent of the halide component mass. The values of lithium ion emission yield, lithium kinetic energy and lithium isotope effect suggest that the lattice relaxation is only important in the lithium ion desorption process from the LiH system. In view of possible mechanisms and processes involved into lithium ion desorption the obtained results indicate that for LiH, LiCl, LiBr and LiI the ions desorb in a rather classical way. However, for LiF, ion desorption has a more quantum character and the modified wave packet squeezing model has to be taken into account.  相似文献   

13.
《Solid State Ionics》2006,177(17-18):1421-1428
Spinel lithium manganese oxides can be used as Li+ adsorbent with topotactical extraction of lithium. In this paper, the solid state methods were introduced to prepare spinel lithium manganese precursors with Li2CO3 and LiOH·H2O as different Li sources. The Li+ uptake was studied to clarify the correction between Li+ adsorption capacity and the preparation conditions of precursors, including different Li sources, Li/Mn mole ratios and heating time. The results indicated that the Li+-extracted materials prepared with LiOH·H2O and MnCO3 usually have higher Li+ adsorption capacity than Li2CO3 and MnCO3, and an ascending trend was found in Li+ uptake with increasing Li/Mn mole ratio in the preparation of the precursor, but it is not proportional. The Mn2O3 impurities could be the primary reason for decreasing Li+ adsorption capacity. Furthermore, it is concluded that the Li+-extracted materials obtained from spinel manganese oxides synthesized with Li/Mn = 1.0 can serve as selective Li+ absorbents due to its high selectivity and large adsorption capacity.  相似文献   

14.
This paper reports on a study of electron-stimulated desorption (ESD) of O+ and Li+ ions from titanium dioxide as a function of the preheating temperature T and of the concentration of lithium adsorbed at 300 K, which was carried out with a static magnetic mass spectrometer combined with a retarding-field energy analyzer. For T>1500 K, the TiO2 surface undergoes irreversible rearrangement. At temperatures from 300 to 900 K and at lithium coverages Θ<1, the ESD cross sections of the O+ and Li+ ions vary in a reversible manner with temperature, while for lithium coverages Θ>1, the changes in the Li+ and O+ ESD cross sections become irreversible. For θ<1, the appearance threshold of the Li+ and O+ ions is 25 eV, whereas for θ>1, the ESD threshold of Li+ ions shifts to 37 eV.  相似文献   

15.
The ionic and electronic conductivities of Lisicon with compositions Li14Zn(GeO4)4-(A) and Li12Zn2(GeO4)4-(B) have been determined in the temperature range 306–578 K. It has thus been shown that the ionic transport number is nearly unity throughout the temperature range. The activation energies for lithium motion were found to be 0.6 eV and 0.47 eV for compounds A and B. These values are very close to the values of the heat of transport q1Li+ 0.59 eV and 0.50 eV respectively, obtained from thermoelectric power (θt) measurements. The total ionic conductivity of the pellets of Lisicon was found to decrease with increasing average grain size in the range 20–78 μ. Electrode effects on the ionic conductivity are also reported for silver and TiS2 electrodes. The electron/hole conductivity was studied using the Wagner cell technique. The activation energies for electron and hole transport for A were estimated as 1.02 eV and 1.39 eV and for B as 0.89 eV and 1.49 eV, respectively. The variation of the dielectric parameters ?', ?” and tan δ have been studied for sample A between 10 Hz-100 kHz. The high frequency dielectric constant (at 100 kHz) was 21.4. The ?' versus ?” (Cole-Cole plot) is also presented.  相似文献   

16.
7Li NMR spectroscopic experiments on Li2TiO3 demonstrate that the presence of planar crystal defects leads to lithium ion mobility in the temperature range of 30–100°C. Kinetics studies show the number of planar defects (and thus the rate of Li-H ion exchange) depends on the method and conditions of lithium titanate synthesis. The complete exchange of Li+ for H+ results in the formation of crystalline titanium oxyhydroxide TiO(OH)2 due to stabilization of defect state.  相似文献   

17.
The structural evolution, stabilities, and electronic properties of copper-doped lithium Li n Cuλ (n?=?1–9, λ?=?0, ?1) clusters have been systematically investigated using a density functional method at PW91PW91 level. Extensive searches for ground-state structures were carried out, and the results showed the copper tends to occupy the most highly coordinated position and form the largest probable number of bonds with lithium atoms. By calculating the binding energies per atom, fragmentation energies and the HOMO-LOMO gaps, we found LiCu, Li7Cu, LiCu?, Li2Cu? and Li8Cu? clusters have the stronger relative stability and enhanced chemical stability. The content and pattern of frontier MOs for the most stable doped isomers were analysed to investigate the bond nature of interaction among Li and Cu atoms. The results show some σ-type and π-type bonds are formed among them, and with small admixture of the Cu d characters. To achieve a deep insight into the electron localization and reliable electronic structure information, the natural population analysis and electron localization function were performed and discussed.  相似文献   

18.
李子荣  孟庆安  管荻华  王刚 《物理学报》1999,48(6):1175-1178
利用脉冲梯度场NMR方法直接测量了不同温度下的不同组分的PAN为基凝胶聚合物电解抽PAN-EC/PL-LiClO4中锂离子的自扩散系数D.结果表明,锂离子的自扩散系数D依赖于锂盐质量分数x%,关且在x从5到20范围内,x=10时D有最大值.这与锂离子跳跃的传输机制及同时受到增塑剂EC与聚合物PAN网络的相互作用有关. 关键词:  相似文献   

19.
本文基于密度泛函理论研究了在水溶液中不同结构冠醚对Li~+的选择性.通过对几何结构、结合能和热力学的计算,发现15-冠-5(15C5)对Li~+的选择性强于12-冠-4(12C4)和18-冠-6(18C6).苯并15-冠-5(B15C5)与Li~+的结合能小于15C5,但在溶液巾结合Li~+时具有更低的自山能.研究了B15C5和Li、Co、Ni水合离子之间的交换反应,表明B15C5与水合锂离子之间的反应占据优势.上述结果表明采用B15C5从废旧钾离子电池浸出液中回收锂具有一定的可行性.  相似文献   

20.
Poly[lithium methacrylate-co-oligo(oxyethylene)methacrylate] film was prepared as a polymeric solid electrolyte which showed lithium ionic conductivity of 2×10?7(S/cm). This film contained no organic plasticizer nor low molecular weight lithium salts and shown to be a single-ion conductor in solid state. Li+ ionic conductivity was deeply influenced by the glass transition temperature and lithium methacrylate content of this film. A rechargeable battery composed of metallic lithium/this film/graphite showed better characteristics than any previously reported systems using polymeric solid electrolytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号