首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A theoretical model of turbulent fiber suspension is developed by deriving the equations of Reynolds averaged Navier-Stokes,turbulence kinetic energy and turbulence dissipation rate with the additional term of fibers.In order to close the above equations,the equation of probability distribution function for mean fiber orientation is also derived.The theoretical model is applied to the turbulent channel flow and the corresponding equations are solved numerically.The numerical results are verified by comparisons with the experimental ones.The effects of Reynolds number,fiber concentration and fiber aspect-ratio on the velocity profile,turbulent kinetic energy and turbulent dissipation rate are analyzed.Based on the numerical data,the expression for the velocity profile in the turbulent fiber suspension channel flow,which includes the effect of Reynolds number,fiber concentration and aspect-ratio,is proposed.  相似文献   

3.
We study the three-dimensional forced-dissipated Gross-Pitaevskii equation. We force at relatively low wave numbers, expecting to observe a direct energy cascade and a consequent power-law spectrum of the form kα. Our numerical results show that the exponent α strongly depends on how the inverse particle cascade is attenuated at ks lower than the forcing wave-number. If the inverse cascade is arrested by a friction at low ks, we observe an exponent which is in good agreement with the weak wave turbulence prediction k−1. For a hypo-viscosity, a k−2 spectrum is observed which we explain using a critical balance argument. In simulations without any low k dissipation, a condensate at k=0 is growing and the system goes through a strongly turbulent transition from a 4-wave to a 3-wave weak turbulence acoustic regime with evidence of k−3/2 Zakharov-Sagdeev spectrum. In this regime, we also observe a spectrum for the incompressible kinetic energy which formally resembles the Kolmogorov k−5/3, but whose correct explanation should be in terms of the Kelvin wave turbulence. The probability density functions for the velocities and the densities are also discussed.  相似文献   

4.
5.
Stable, accurate, divergence-free simulation of magnetized supersonic turbulence is a severe test of numerical MHD schemes and has been surprisingly difficult to achieve due to the range of flow conditions present. Here we present a new, higher order-accurate, low dissipation numerical method which requires no additional dissipation or local “fixes” for stable execution. We describe PPML, a local stencil variant of the popular PPM algorithm for solving the equations of compressible ideal magnetohydrodynamics. The principal difference between PPML and PPM is that cell interface states are evolved rather that reconstructed at every timestep, resulting in a compact stencil. Interface states are evolved using Riemann invariants containing all transverse derivative information. The conservation laws are updated in an unsplit fashion, making the scheme fully multidimensional. Divergence-free evolution of the magnetic field is maintained using the higher order-accurate constrained transport technique of Gardiner and Stone. The accuracy and stability of the scheme is documented against a bank of standard test problems drawn from the literature. The method is applied to numerical simulation of supersonic MHD turbulence, which is important for many problems in astrophysics, including star formation in dark molecular clouds. PPML accurately reproduces in three-dimensions a transition to turbulence in highly compressible isothermal gas in a molecular cloud model. The low dissipation and wide spectral bandwidth of this method make it an ideal candidate for direct turbulence simulations.  相似文献   

6.
陈勇  郭隆德  彭强  陈志强  刘卫红 《物理学报》2015,64(13):134701-134701
本文开展低速湍流的预处理技术研究. 该预处理技术采用守恒型变量及主控方程与湍流方程相耦合的隐式求解方法, 并为确保迭代求解稳定性, 发展了合理的参考马赫数定义、双时间步无矩阵方法迭代求解形式以及湍流源项隐式处理方法等, 从而真正实现全速湍流软件平台统一形式. 在喷管、翼型和方柱等低速湍流数值模拟中, 本文方法正确刻画了流场结构特征, 计算与理论、实验等相关结果符合较好, 具有很强的迭代收敛性和结果精度.  相似文献   

7.
8.
In wave turbulence, which is made by nonlinear interactions among waves, it has been believed that statistical properties are well described by the weak turbulence theory, where separation of linear and nonlinear time scales derived from weak nonlinearity is assumed. However, the separation of the time scales is often violated. To get rid of this inconsistency, closed equations are derived in wave turbulence without assuming the weak nonlinearity according to Direct-Interaction Approximation (DIA), which has been successful in Navier-Stokes turbulence. The DIA equations is a natural extension of the conventional kinetic equation to not-necessarily-weak wave turbulence.  相似文献   

9.
非线性波方程尖峰孤子解的一种简便求法及其应用   总被引:1,自引:0,他引:1       下载免费PDF全文
刘煜 《物理学报》2009,58(11):7452-7457
根据尖峰孤子解的特点,提出了一种待定系数法求非线性波方程尖峰孤子解的思路和方法,并利用该方法求解了5个非线性波方程,即CH(Camassa-Holm)方程、五阶KdV-like 方程、广义Ostrovsky方程、组合KdV-mKdV方程和Klein-Gordon方程,比较简便地得到了这些方程的尖峰孤子解.文献中关于CH方程的结果成为本文结果的特例.通过数值模拟给出了部分解的图像.简要说明了非线性波方程存在尖峰孤子解所须满足的特定条件.该方法也适用于求其他非线性波方程的尖峰孤子解. 关键词: 非线性波方程 尖峰孤子解 待定系数法  相似文献   

10.
The validity of the axisymmetric parabolic-equation (PE) method for line-of-sight sound propagation in a turbulent atmosphere is investigated. The axisymmetric PE method is a finite-difference method for solving a 2D parabolic wave equation, which follows from the 3D wave equation by the assumption of axial symmetry around the vertical axis through the source. It is found that this axisymmetric approximation has a considerable spurious effect on the fluctuations of the sound field. This is concluded from analytical expressions for the log-amplitude and phase variances, derived both for isotropic turbulence and for axisymmetric turbulence. The expressions for axisymmetric turbulence are compared with the results of numerical computations with the PE method.  相似文献   

11.
Shock waves in high-speed flows can drastically alter the nature of Reynolds stresses in a turbulent flow. We study the canonical interaction of homogeneous isotropic turbulence passing through a normal shock, where the shock wave generates significant anisotropy of Reynolds stresses. Existing Reynolds stress models are applied to this canonical problem to predict the amplification of the stream-wise and transverse normal Reynolds stresses across the shock wave. In particular, the efficacy of the different models for the rapid pressure–strain correlation is evaluated by comparing the results with available direct numerical simulation (DNS) data. The model predictions are found to be grossly inaccurate, especially at high-Mach numbers. We propose physics-based improvement to the Reynolds stress-transport equation in the form of shock-unsteadiness effect and enstrophy amplification for turbulent dissipation rate . The resulting model is found to capture the essential physics of Reynolds stress amplification, and match DNS data for a range of Mach numbers. Numerical error encountered at shock waves are also analysed and the model equations are cast in conservative form to obtain physically consistent results with successive grid refinement. Finally, the proposed model for canonical shock-turbulence interaction is generalised to multi-dimensional flows with shock of arbitrary orientation.  相似文献   

12.
将空间-时间守恒(STC)格式应用于求解N-S方程,并对激波-边界层相互作用问题进行了计算.结果表明,该方法可捕获激波与边界层相互作用的各种现象,显示了优良的数值模拟性能。  相似文献   

13.

The stationary profile in the focal region of a focused nonlinear acoustic wave is described. Three models following from the Khokhlov-Zabolotskaya (KZ) equation with three independent variables are used: (i) the simplified one-dimensional Ostrovsky-Vakhnenko equation, (ii) the system of equations for paraxial series expansion of the acoustic field in powers of transverse coordinates, and (iii) the KZ equation reduced to two independent variables. The structure of the last equation is analogous to the Westervelt equation. Linearization through the Legendre transformation and reduction to the well-studied Euler-Tricomi equation is shown. At high intensities the stationary profiles are periodic sequences of arc sections having singularities of derivative in their matching points. The occurrence of arc profiles was pointed out by Makov. These appear in different nonlinear systems with low-frequency dispersion. Profiles containing discontinuities (shock fronts) change their form while passing through the focal region and are non-stationary waves. The numerical estimations of maximum pressure and intensity in the focus agree with computer calculations and experimental measurements.

  相似文献   

14.
《Physics letters. A》2005,337(3):166-182
Stochastic wave equations of Schrödinger type are widely employed in physics and have numerous potential applications in chemistry. While some accurate numerical methods exist for particular classes of stochastic differential equations they cannot generally be used for Schrödinger equations. Efficient and accurate methods for their numerical solution therefore need to be developed. Here we show that existing Runge–Kutta methods for ordinary differential equations (odes) can be modified to solve stochastic wave equations provided that appropriate changes are made to the way stepsizes are selected. The order of the resulting stochastic differential equation (sde) scheme is half the order of the ode scheme. Specifically, we show that an explicit 9th order Runge–Kutta method (with an embedded 8th order method) for odes yields an order 4.5 method for sdes which can be implemented with variable stepsizes. This method is tested by solving systems of equations originating from master equations and from the many-body Schrödinger equation.  相似文献   

15.
Using formal scattering theory, the scattering wave functions are extrapolated to negative energies corresponding to bound-state poles. It is shown that the ratio of the normalized scattering and the corresponding bound-state wave functions, at a bound-state pole, is uniquely determined by the bound-state binding energy. This simple relation is proved analytically for an arbitrary angular momentum quantum number l > 0, in the presence of a velocity-dependent Kisslinger potential. The extrapolation relation is tested analytically by solving the Schr?dinger equation in the p-wave case exactly for the scattering and the corresponding bound-state wave functions when the Kisslinger potential has the form of a square well. A numerical resolution of the Schr?dinger equation in the p-wave case and of a square-well Kisslinger potential is carried out to investigate the range of validity of the extrapolated connection. It is found that the derived relation is satisfied best at low energies and short distances. Received: 17 October 2001 / Accepted: 4 January 2002  相似文献   

16.
本文通过直接数值模拟对均匀各向同性湍流中颗粒对湍流的变动作用进行了研究.颗粒相的体积分数很小而质量载荷足够大,以至于颗粒之间的相互作用可以忽略不计,而重点考虑颗粒与湍流间能量的交换。颗粒对湍流的反向作用使得湍动能的耗散率增强,以至于湍动能的衰减速率增大.湍动能的衰减速率随颗粒惯性的增大而增大。三维湍动能谱显示,颗粒对湍动能的影响在不同的尺度上是不均匀的。在低波数段,流体带动颗粒,而高波数段则相反.  相似文献   

17.
Comparison between numerical simulation and experimental results for unsteady flow field in a radial diffuser pump is presented for the design operating point. The numerical result is obtained by solving three-dimensional, unsteady Reynolds-averaged Navier-Stokes equations by the commercial CFD code CFX-10 withk-ω based shear stress transport turbulence model. Two-dimensional PIV measurements are conducted to acquire the experiment result. The phase-averaged velocity and turbulent kinetic energy fields are compared in detail between the results by the two methods in the impeller, diffuser and return channel regions. The qualitative comparison between CFD and PIV results is quite good in the phase-averaged velocity field. Although the turbulence level by PIV is higher than that by CFD generally, the main turbulence features are nearly the same. Furthermore, the blade orientation effect and other associated unsteady phenomena are also examined, in order to enhance the understanding on impeller-diffuser interaction in a radial diffuser pump.  相似文献   

18.
将空间—时间守恒(STC)格式应用于求解N-S方程,并对激波—边界层相互作用问题进行了计算。结果表明,该方法可捕获激波与边界层相互作用的各种现象,显示了优良的数值模拟性能。  相似文献   

19.
The notions of weak Darboux integrability and hyperbolic reduction are introduced, and their potential is gauged as a means of extending the range of application of geometric methods for solving hyperbolic partial differential equations. For directness, our work is expressed in local coordinates and formulated for semilinear hyperbolic systems in two independent variables. The theory is applied to the study of 1+1-wave maps into surfaces of revolution. It is shown that the differential system for any such wave map may be viewed as an integrable extension of a certain scalar, semilinear, hyperbolic partial differential equation which is explicitly constructed. Using this we discover a new integrable wave map system for which hyperbolic reduction leads to a large family of explicit wave maps.  相似文献   

20.
王光辉  王林雪  王灯山  刘丛波  石玉仁 《物理学报》2014,63(18):180206-180206
采用有限差分法对非线性色散K(m,n,p)方程的多-Compacton之间的相互作用进行了数值研究.该差分方法为二阶精度且线性意义下绝对稳定的无耗散格式,通过添加人工耗散项有效防止了数值解的爆破现象.首先对单-Compacton的长时间演化行为进行了数值模拟,验证了数值方法的有效性.然后对双-CompaCton和三-Compacton的碰撞过程进行了数值研究,发现多-Compacton碰撞之后基本保持碰撞之前的波形和波速,但在波后产生小振幅的Compacton-Anticompacton对.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号