首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We reported on the ablation depth control with a resolution of 40 nm on indium tin oxide (ITO) thin film using a square beam shaped femtosecond (190 fs) laser (λp=1030 nm). A slit is used to make the square, flat top beam shaped from the Gaussian spatial profile of the femtosecond laser. An ablation depth of 40 nm was obtained using the single pulse irradiation at a peak intensity of 2.8 TW/cm2. The morphologies of the ablated area were characterized using an optical microscope, atomic force microscope (AFM), and energy dispersive X-ray spectroscopy (EDS). Ablations with square and rectangular types with various sizes were demonstrated on ITO thin film using slits with varying xy axes. The stereo structure of the ablation with the depth resolution of approximately 40 nm was also fabricated successfully using the irradiation of single pulses with different shaped sizes of femtosecond laser.  相似文献   

2.
《Ultrasonics sonochemistry》2014,21(4):1284-1288
TiO2–WO3 heterostructures were synthesized at room temperature, ambient pressure, and short reaction time via a sonochemical approach. TEM and EDX images show that the prepared TiO2–WO3 heterostructures consist of globular agglomerates (∼250 nm in diameter) composed of very small (<5 nm) dense particles (WO3) dispersed inside the globules. The observed less intense monoclinic WO3 diffraction peak (around 2θ = 22° belonging to (0 0 1) plane) and the high intense hexagonal WO3 diffraction peak (around 2θ = 28° belonging to (2 0 0) plane) in XRD indicate that there may be phase transition occurring due to the formation of intimate bond between TiO2 and WO3. In addition, the formation of such new phase was also observed from Raman spectra with a new peak at 955 cm−1, which is due to the symmetric stretching of W = O terminal. The catalytic activity of TiO2–WO3 heterostructures was tested for the degradation of wastewater pollutant containing Tergitol (NP-9) by a process combined with ozonation and it showed two-fold degradation rate compared with ozone process alone.  相似文献   

3.
The photoluminescence (PL) properties of nano- and micro-crystalline Hg1?xCdxTe (x≈0.8) grown by the solvothermal method have been studied over the temperature range 10–300 K. The emission spectra of the samples excited with 514.5 nm Ar+ laser consist of five prominent bands around 0.56, 0.60, 0.69, 0.78 and 0.92 eV. The entire PL band in this NIR region is attributed to the luminescence from defect centers. The features like temperature independent peak energy and quite sensitive PL intensity, which has a maximum around 50 K is illustrated by the configuration coordinate model. After 50 K, the luminescence shows a thermal quenching behavior that is usually exhibited by amorphous semiconductors, indicating that the defects are related to the compositional disorder.  相似文献   

4.
Efficient eye-safe 1.6 μm monolithic laser was realized in a c-cut, 0.7-mm-thick Er3+:Yb3+:YAl3(BO3)4 microchip end-pumped by a quasi-continuous-wave 970 nm diode laser. At incident pump peak power of 20.4 W, a maximum output peak power of 2.6 W with a slope efficiency of 19% was obtained when the waist radius of pump laser beam was 220 μm. The spectra and profiles of output beam of the Er3+:Yb3+:YAl3(BO3)4 monolithic laser were measured. The influences of the waist radius of pump laser beam on the slope efficiency and threshold of the monolithic laser were also investigated.  相似文献   

5.
Active homodyne control can be used to stabilize; π/2-rad phase steps in a Fiber-Optic Projected-Fringe Digital Interferometry. Two beams emitted from a fiber-optic coupler are combined to form an interference fringe pattern on a diffusely reflecting object. Fresnel reflections from the distal fiber ends undergo a double pass in the fibers and interference at the fourth port of the coupler which formed a Michelson interferometer. We suggested a method of PTDC (DC phase tracking) to maintain the interference intensity at quadrature by feedback control. Stepping between quadrature positions force a π/2-rad phase step. A method based on the ratio of harmonic of the interference signal is proposed to estimate phase step accuracy .A root-mean-square phase stability of 2 mrad and phase step accuracy of 13.8 mrad were measured with PTDC for the Fiber-Optic Projected-Fringe Digital Interferometry. It worked well in 2 h without resetting the integrator.  相似文献   

6.
Profile shaping of a Gaussian laser beam by an acoustic wave is well described using Collins integral and ABCD matrix formalism. It is shown by a numerical simulation that the relative width of the laser beam to the ultrasonic wavelength and the acoustic pressure inside the acoustooptic cell act on the light intensity diffraction pattern.Obtained results show that the output intensity profile differs from the incident Gaussian beam shape, and it is more broadened with an increase in the acoustic pressure. The intensity of a focused laser beam is transformed in a flat form in the central region if the acoustic pressure is proprely controlled.On the other hand the intensity longitudinal range (ILR) of the flat shape is discussed along the propagation axes, we have found the ILR is about 2 mm for a focal length distance f=100 mm.  相似文献   

7.
A LuAG shaped rod crystal, doped with Yb3+, has been grown by μ-PD technique. The crystal diameter was about 3 mm and the length around 130 mm. A complete spectroscopic investigation in the temperature range 10–300 K is reported and data has been utilized to model the laser behavior. In the laser experiment the Yb:LuAG sample was placed in an X cavity and pumped longitudinally obtaining an efficient CW laser emission. The Yb:LuAG laser yielded a maximum output power of 23 mW with a slope efficiency of 32% and a threshold around 35 mW, at lasing wavelength of 1030 nm. No significant depolarization effects were observed, indicating a crystal growth with negligible stress. The output beam profile was investigated, yielding M2  1.0 in both directions, further confirming the good optical quality of the sample.  相似文献   

8.
Coherent beam combination of two thulium-doped fiber laser beams using a multi-dithering technique is presented for the first time. In the experiment, two fiber lasers centered at 1948.6 nm are coherently combined, and a phase modulator based on piezoelectric ceramics transducer is connected in one beam path to compensate for the phase errors between the two beams. When the phase control system is closed loop, the fringe contrast of the far-field intensity pattern is improved to be more than 75%, from 15% in open-loop, and the residual phase error is less than λ/20. The experimental results show that the performance of the phase control system is robust and the control bandwidth is more than 1 kHz, which indicates that the above approach can be scaled to facilitate the coherent beam combination of kilo-watt level thulium-doped fiberlaser.  相似文献   

9.
During laser spectroscopic measurement, a part of laser energy will be converted into heat in the processes of excitation and light emission. Temperature monitoring can help to evaluate such nonradiative process. Upconversion luminescence of phosphor Y2O3:Er,Yb under laser excitation at 980 nm was investigated in this work. Point temperature of the phosphor was monitored using the fluorescent intensity ratio (FIR) technology. Laser induced temperature rising was identified by comparison with a theoretically ideal temperature calibration function: lnR = 3.1738–1167/T. The monitored temperature of laser heating rises monotonically with increasing laser power. Circumstances around heating point will modify the calibration function, but the linear slope of lnR ~ 1/T is constant.  相似文献   

10.
The appearance of intense terahertz sources such as quantum cascade laser and free electron laser opens up new opportunities for 2D imaging. Though microbolometer and pyroelectric arrays are promising recorders, they are of small size and cannot be used when wide-field imaging in the longwave region is required. We applied for terahertz imaging 3″ × 3″ and 6″ × 6″ Macken Instruments Inc. “thermal image plates”, a set of thermal sensitive phosphor screens operating in a room temperature environment. The Novosibirsk free electron laser was used as a source of radiation. We have found that the response of thermal image plate is linear until the relative quenching is less than 60% of the initial luminescence intensity. The response curve follows the Seitz–Mott law. The threshold sensitivity was found to be 100 mW/cm2 at 1.5 THz and 40 mW/cm2 at 2.3 THz. Interferograms, holograms, and terahertz beam spatial distributions recorded in the spectral range of 1.2–2.5 THz are given as examples.  相似文献   

11.
M.K. Maurya  R.A. Yadav 《Optik》2012,123(14):1260-1270
Frequency detuning dependence of four-beam coupling in a photorefractive crystal pumped with two counter-propagating waves for a semilinear coherent optical resonator on the oscillation conditions has been analyzed in the case of non-degenerate-wave mixing under the slowly varying amplitude approximation method. Self oscillation can be achieved when the gain arising from the four-beam coupling is large enough to overcome the cavity loss. The effects of frequency detuning (i.e., non-degeneracy), dielectric constant and photoconductivity of the photorefractive materials on the performance of the semilinear photorefractive coherent resonator with the reflection grating configuration have also been studied in detail. The phase-conjugate reflectivity of the pumped crystal and oscillation intensity has been calculated for different input pump beam intensity ratio, intensity reflectivity of the conventional mirrors, degenerate energy coupling strength of the interacting beams. It has been found that for the higher value of the photoconductivity σp(>2.0 pS/cm) of photorefractive crystal, the semilinear resonator can oscillate at almost any frequency detuning (Ω) of the oscillation beam with respect to the fixed frequency of the pump waves whereas for the lower value of photoconductivity σp(<0.1 pS/cm) oscillation occurs only when the frequency detuning is limited to small region around Ω = 0. But reverse of the case is found for dielectric constant (?), pump intensity ratio (p) and conventional mirror reflectivity (R).  相似文献   

12.
Phase transformations in squaric acid (H2C4O4) have been investigated by thermogravimetry and differential scanning calorimetry with different heating rates β. The mass loss in TG apparently begins at onset temperatures Tdi=245±5 °C (β=5 °C min?1), 262±5 °C (β=10 °C min?1), and 275±5 °C (β=20 °C min?1). A polymorphic phase transition was recognized as a weak endothermic peak in DSC around 101 °C (Tc+). Further heating with β=10 °C min?1 in DSC revealed deviation of the baseline around 310 °C (Ti), and a large unusual exothermic peak around 355 °C (Tp), which are interpreted as an onset and a peak temperature of thermal decomposition, respectively. The activation energy of the thermal decomposition was obtained by employing relevant models. Thermal decomposition was recognized as a carbonization process, resulting in amorphous carbon.  相似文献   

13.
A transient photocurrent model is used to explain terahertz emission from gas plasma irradiated by a laser pulse and the second harmonic. By introducing the second harmonic, 400 nm, the corresponding terahertz emission is greatly enhanced. The exact dependence of terahertz emission on the intensity ratio of 400–800 nm is studied for the case with total intensity of 5.00 × 1014 W/cm2. Results show the emission reaches the maximum at about the case for energy distribution of Iω = 4.00 × 1014 W/cm2, I2ω = 1.00 × 1014 W/cm2.  相似文献   

14.
Nonlinear self-rotation of elliptically polarized laser pulses (λ = 532 nm, τFWHM ~ 12 ns) in toluene, benzene and binary mixture (toluene + ethanol) solutions of fullerene C70 has been investigated experimentally. Absolute values and signs of the nonlinear refractive indices (n2) and nonlinear optical susceptibilities χ(3)(ω, ? ω, ω) of C70 solutions in toluene and benzene at different values of polarization ellipse (θ = 0.2 ÷ 0.8) have been determined. High-resolution transmission electron microscope studies of C70 solutions showed that in toluene + ethanol mixtures ball-shaped C70 clusters are formed with particle sizes in the range ~ 100 ÷ 500 nm. It has been demonstrated, that the clusters sizes depend on the C70 concentration and volume fraction of ethanol in toluene. Correlation between the processes of C70 clusters formation in solutions and the values of polarization self-rotation angle of transmitted laser beam has been demonstrated. Physical mechanisms of laser induced optical activity in fullerene solutions have been discussed.  相似文献   

15.
Laser micro-machining has recently been considered a precision and reproducible manufacturing technique in MEMS fabrication because of the superior characteristics of a focused laser beam. It is not only a unique tool but also an invisible optical drill. The aim of the present paper is two-fold: to manufacture novel miniaturized titanium 3D MEMS surface structures in order to increase the cooling performance. Second is to find the behaviors of the operational parameters which controlling the laser-material interaction mechanisms and also suggest the best adjustments in order to achieve this novel semi-slinky like spiral MEMS surface structures with using a 20 W ytterbium fiber laser. Pure titanium micro-MEMS product which has novel interface coolers was manufactured using a ytterbium fiber laser (λ=1060 nm) with 40 ns pulse duration. Best adjustments were, respectively, the pulse duration: 40 ns, the pulse energy: 0.4 mJ, the laser scanning speed: 336.1 mm/s, the peak power density: 17.46 ? 108 W/cm2.  相似文献   

16.
We report a tunable, narrow linewidth and high beam quality continuous-wave (CW) yellow laser system at 589 nm. The system is an all solid-state design employing single-pass sum–frequency generation in a KTP crystal by mixing the 1064 nm with 1319 nm lines of two side-pumped Nd:YAG enforcing unidirectional ring lasers. With this method, a CW yellow laser at 589.159 nm with an output power of 0.8 W, a linewidth less than 1.5 GHz and a beam quality M2 = 1.29 is obtained. The wavelength of the laser also can be precisely tuned from 589.112 to 589.181 nm in step-length of about 0.22 pm.  相似文献   

17.
A laser image system for investigating twin bubbles formation in shear-thinning fluid was established. The process of twin-bubble formation could be directly visualized and real-time recorded through computer by means of He–Ne laser as light source using the beam expanding and light amplification technology. The shape and size of bubbles generating in carboxymethylcellulose (CMC) aqueous solutions were studied experimentally at orifice diameter 1 mm, 1.6 mm and 2.4 mm, the orifices interval 1Do, 2Do and 3Do (Do: orifice diameter) and the gas flow rate from 0.1 to 1.0 ml/s, respectively. The effects of solution mass concentration, orifice diameter and orifice interval on bubble detachment volume were investigated. The results reveals that twin bubbles gradually touch each other and then deviate from the vertical axis crossing the middle point of the line joining the two orifice during the formation process. However compared with the perfect teardrop terminal shapes in glycerol solution, the bubbles formed in CMC solutions are stretched vertically due to the shear-thinning effect of fluids. The bubble detachment volume increases with the solution mass concentration, whereas decreases with orifice diameter. The detachment volume generated at twin orifices is less affected by orifices interval, but still smaller than that at single orifice.  相似文献   

18.
A study of porous surfaces having micropores significantly smaller than laser spot on the stainless steel 304L sample surface induced by a picosecond regenerative amplified laser, operating at 1064 nm, is presented. Variations in the interaction regime of picosecond laser pulses with stainless steel surfaces at peak irradiation fluences(Fpk=0.378–4.496 J/cm2) with scanning speeds(v=125–1000 μm/s) and scan line spacings(s=0–50 μm) have been observed and thoroughly investigated. It is observed that interactions within these parameters allows for the generation of well-defined structured surfaces. To investigate the formation mechanism of sub-focus micropores, the influence of key processing parameters has been analyzed using a pre-designed laser pulse scanning layout. Appearances of sub-focus ripples and micropores with the variation of laser peak fluence, scanning speed and scan line spacing have been observed. The dependencies of surface structures on these interaction parameters have been preliminarily verified. With the help of the experimental results obtained, interaction parameters for fabrication of large area homogeneous porous structures with the feature sizes in the range of 3–15 μm are determined.  相似文献   

19.
Using three-dimensional classical ensembles, we have investigated the enhancement of double ionization of perpendicularly aligned H2 molecules by a 800 nm laser pulse with intensity ranging from 1 × 1014 W/cm2 to 6 × 1014 W/cm2. The simulated results show that double ionization probability of H2 strongly depends on R and reaches a maximum at an intensity independent critical distance RC  5 a.u. Furthermore, the enhancement of double ionization is more pronounced in the cases of weaker or stronger fields. These results, a well indication of the influence of molecular structures and laser–molecule interactions on double ionization of diatomic molecules, are analyzed in detail and qualitatively explained based on the field-induced barrier suppression model and back analysis.  相似文献   

20.
Silicate mineral hemimorphite has been investigated concerning its TL, IR and EPR properties. A broad TL peak around 180 °C and a weaker and narrower peak around 360 °C were found in a sample annealed at 600 °C for 1 h and then irradiated. The deconvolution using the CGCD method revealed peaks around 132, 169, 222 and 367 °C. The reflectivity measurements showed several bands in the NIR region due to H2O, OH and Al–OH complexes. No band was observed in the visible region. The thermal treatments were carried out from ∼110 to 940 °C and dehydration was observed, first causing a diminishing optical absorption in general and the disappearance of water and hydroxyl absorption bands. The EPR spectrum of natural hemimorphite, presented Cu2+ signals at g = 2.4 and g = 2.1 plus E1′ signal superposed to Fe3+ signal around g = 2.0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号