首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The local stress concentrations in sandwich beam with a plate insert under in-plane bending are concerned in the study. An improved six-step phase shifting method in digital photoelasticity is employed to calculate the whole-field shear stress.The shear load transfer is realized by shear bands which connect the top and bottom sheet faces through adhesively-bonded interfaces. The plate insert plays a role in load transfer in the sandwich structure, and the fact that debonding might occur at more sites of the interfaces may also leads to the failure of the structure. The local stress concentrations at the insert end change with the load under three-point bending loads, while they remain as the initial residual shear stress under four-point bending loads. The local stress concentration effects generated by the plate insert is essentially caused by the mismatch of elastic properties of the core materials and the irrational geometry of the insert.  相似文献   

2.
张永康  孔德军  冯爱新  鲁金忠  葛涛 《物理学报》2006,55(11):6008-6012
利用X射线衍射技术(XRD)测试了涂层及其基体材料的应力及其变化规律,建立了一种涂层结合界面应力检测系统,进行界面结合状态的检测研究.利用涂层从基体脱粘前后的界面应力变化量,结合涂层材料的物性参数和涂层-基体系统温度场参数,用涂层残余应力衍射峰来表征涂层与基体的结合强度,创立一种研究检测涂层结合强度理论的实验新方法,适用于各种热障涂层的界面结合强度测量. 关键词: X射线衍射法(XRD) 界面结合强度 涂层 残余应力  相似文献   

3.
The ability to achieve uniform stress in uniaxial compression tests of polycrystalline alumina is of significance for the calibration of piezospectroscopic coefficients as well as strength studies in ceramics. In this study high‐energy X‐rays were used to capture powder diffraction profiles over a half‐section of a polycrystalline alumina parallelepiped sample under an increasing uniaxial compressive load. The data were converted to strain and results were used for stress mapping of the sample. Stress maps from the study quantify the higher stresses at the sample–platen contact interface and reveal the evolution of the stress distribution in these specimens with load. For the geometry of the samples used, at the center section of the specimen the overall magnitudes of the compressive stresses were found to be 20% higher compared with the average expected theoretical stress based on the applied load and cross‐sectional area. The observed compressive stresses at the corners of the parallelepiped specimen were 62% higher and shear stresses were observed at the specimen interface to the load mechanism. The effects, seen at the interface, can lead to premature failure at these locations and can affect the accuracy of calibration of spectral peaks with stress as well as compression strength measurements. The results provide important information that can be used to establish guidelines on material and geometry considerations in developing compression tests on high‐strength ceramics.  相似文献   

4.
刘婧  徐卫疆  胡文祥 《物理学报》2016,65(7):74301-074301
在用超声波谐振对粘接材料的粘接强度进行无损评估时, 不同模式对粘接强度的敏感程度受到众多因素和参数的影响, 对检测结果的可靠性至关重要. 基于多层介质中声传播和界面弱粘接边界条件的理论模型, 将一个上下非对称的金属-粘接剂-金属三层结构的平面波反射系数函数中的谐振模式看作是上下铝金属层各自的Lamb波频散模式通过夹心粘接剂层相互耦合后叠加组成. 改变影响结构粘接强度的因素, 即粘接剂的性能参数(声阻抗、密度、厚度)和界面切向劲度系数kt来分析三层结构谐振模式耦合方式的变化,得出结论: 粘接结构粘接性能的变化基本上不改变与被粘铝层相关的固有部分的Lamb波模式, 而它们的耦合模式则在谐振频率上产生平移并会与固有模式进行交换和替代; 不同参数的变化引起的模式演变有各自的规律, 大多可彼此区分.  相似文献   

5.
A calculation method based on the shear lag approach was presented to get an approximate estimate of influences of residual stresses and frictional shear stress at the debonded interface on the interfacial debonding behavior at the notch-tip along fiber direction in two-dimensional unidirectional double-edge-notched composites. With this method, the energy release rate for initiation and growth of debonding as a function of composite stress were calculated for some examples. The calculation results showed in outline how much the tensile and compressive residual stresses in the matrix and fiber along fiber direction, respectively, act to hasten the initiation and growth of the debonding when the final cut element in the notch is matrix, while they act to retard them when the final cut element is fiber, and how much the frictional shear stress at the debonded interface reduces the growth rate of the debonding.  相似文献   

6.
硅压力传感器中硅玻璃阳极键合的热应力分析   总被引:1,自引:0,他引:1  
由于硅与玻璃阳极键合需要在相对较高的温度下进行,因此材料之间会因热膨胀系数失配而产生较大的热应力,该应力对压力传感器的性能影响较大。对采用单晶硅横膈膜作为敏感膜与玻璃环阳极键合形成压力参考腔的封装,用有限元方法对硅玻璃环键合后因温度变化所产生的应力分布进行了系统仿真分析,并采用泰曼一格林干涉仪对键合后硅片的变形进行测量。测量结果显示硅膜的挠度为283nm,测量结果与仿真结果基本一致。  相似文献   

7.
Stress transfer efficiency in model composites under dynamic loading   总被引:1,自引:0,他引:1  
The micromechanics of tension–tension fatigue loading in model single-fibre composite geometries is investigated in this paper. In an attempt to emulate the conditions encountered in full carbon fibre composites, the fibres were prestrained prior to the curing process to ensure that they were free of high residual compressive stresses as a result of resin shrinkage. The resulting specimens were grouped into two categories depending on the level of the initial fibre prestrain (case A low, case B high). The cyclic load is designed to be well below the endurance fatigue limit of the polymer matrix (∼0.6%), and to have a frequency low enough to avoid unwanted thermal post curing. Throughout the preparation procedure, as well as during fatigue loading, the fibre stress (strain) was constantly monitored by means of laser Raman spectroscopy. The fibre axial stress distributions at each fatigue step were converted to interfacial shear stress (ISS) distributions, from which important parameters such as the maximum ISS the system can accommodate, the transfer length for efficient stress built-up and the length required for the attainment of maximum ISS were obtained. The results showed that, up to 2×106 loading cycles, the main parameters which affected the stress transfer efficiency at the interface were the fibre fracture process itself and the viscoelastic behaviour of the matrix material. Received: 7 November 2001 / Accepted: 22 March 2002 / Published online: 5 July 2002  相似文献   

8.
 采用有限元方法对钼基体上不同厚度(20~1 000 μm)金刚石膜的热残余应力进行了全面的模拟与分析,得出了它们在膜内分布的等值线图,研究了金刚石膜厚度尺寸对整个膜内的最大主拉应力和界面处每个应力分量最大值的影响。结果表明:在整个膜内,最大主拉应力的位置出现在膜的表面、界面或侧面,其值随膜厚度的增加而增大;在界面处,最大轴向应力随膜厚度的增加而增大,而最大径向压应力、最大周向压应力和最大剪应力则随膜厚度的增加而减小,其中最大剪应力减幅较小;膜厚度越大时,以上各量随厚度增(减)的速度越慢。其结论对于在金刚石膜的制备中合理地选择厚度、有效地进行应力控制有一定的参考价值。  相似文献   

9.
The mechanical behaviour of fibre-reinforced composites under transverse tension, compression and shear is studied using computational micromechanics. The representative volume element is constructed for fibre’s random distribution. The Drucker–Prager model and cohesive zone model are used to simulate the matrix damage and interfacial debonding, respectively. The stress distribution along the interface is studied using the model with only one fibre embedded in the matrix. It is found that the interface tensile failure at the equators of fibre firstly occurs under transverse tension; the interface shear failure firstly occurs under transverse compression; both the interface tensile failure and shear failure occur under transverse shear. The direction of fracture plane is perpendicular to the loading direction under transverse tension, 52.5° with the perpendicular direction under compression and 7.5° with the perpendicular or vertical direction under shear, respectively.  相似文献   

10.
《Composite Interfaces》2013,20(5-6):459-477
A simplified calculation method for study of the growth of interfacial debonding between elastic fiber and elastic matrix ahead of the notch-tip in composites under displacement and stress controlled conditions was presented based on the shear lag approach in which the influences of residual stress and frictional shear stress at the debonded interface were incorporated. The calculation method was applied to a model two-dimensional composite. An outline is given of the difference and similarity in the growing behavior of the debonding between the displacement and stress controls, and of the influences of the residual stresses, frictional shear stress, the nature of the final cut component (fiber or matrix) and sample length on the debonding behavior.  相似文献   

11.
Interface between fiber and matrix as a stress transfer medium determines composite performances in load-bearing structures. For instance, failures in composite are most likely initiated by an accumulation of interfacial cracks allowing little or no stress transfer from the matrix to the fiber and vice versa. This paper studies stress transfer behaviors at the interface subject to axial and transverse loadings using the finite element method. Single fiber surrounded by matrix was modeled by introducing a cohesive zone model (CZM) at the interface taking into account the bonding mechanism. By the proposed technique, plastic deformation in the matrix and exerted friction at the interface was verified to govern the role of stress transfer at the interface. Further, the influence of other fibers in matrix surrounding the model was also discussed.  相似文献   

12.
《Composite Interfaces》2013,20(5):467-482
The influence of thermal history on the interfacial load transfer efficiency and fibre failure in carbon/polypropylene microcomposites has been studied using Micro Raman spectroscopy. Microcomposites were manufactured by cooling from the melt at different constant cooling rates or isothermally crystallized. Thermal residual strains were measured during and after manufacture of the microcomposites. The residual strains resulted in compressive fibre failure. Based on the experimental data, interfacial load transfer efficiency was determined quantitatively for the different cooling procedures. Results indicate that thermal history has a very large influence on the interfacial load transfer efficiency of the microcomposites. This was shown to be due to the influence of thermal history on transcrystallinity and interfacial residual stresses. A transcrystalline interphase provides a more effective load transfer compared to the non-transcrystalline interphase. Furthermore, decreasing cooling rates leads to an increase in load transfer efficiency due to increased transcrystallinity and higher crystallization temperature resulting in higher interfacial stresses.  相似文献   

13.
The objective of this article is to provide an experimental test and evaluation on mechanical characteristics of the W/Cr interface. The elastic modulus and hardness of the sample are measured by a nanoindentation tester. The test results show that the elastic modulus and hardness of the sample are nonlinear with respect to the depth h of the interface structure, unlike the usual approximate horizontal linear relationship as expected. To understand the bonding characteristics between W and Cr in nanoscale, the nano-scratch test is conducted considering the influence of thermal cycling load on the sample. The test results show that interfacial bonding strengths are different between samples under different thermal cycling loading conditions. It implies that the thermal loading has the potential probability to reduce the bonding reliability of the W/Cr interface. It builds a basis for future work of further investigations on mechanical properties of W/Cr interface structure.  相似文献   

14.
Holographic-hole drilling is a method developed for the rapid determination of residual stresses from an optical interference fringe pattern. A small diameter blind hole is drilled into a part containing residual stresses, and the displacements caused by localized stress relief are registered by real-time holographic interferometry. The resulting fringe pattern is evaluated to calculate residual stresses, using a simple ‘fringe counting’ method described here. Results of applying the method in laboratory tests to a variety of uniform biaxial states-of-stress from equibiaxial compression to pure shear are shown. Two sample applications of the method, the evaluation of residual stresses at a cold-worked hole and at a weld bead, are also given. Extensions of the method to evaluate stresses non-uniform in depth and/or along the surface are discussed.  相似文献   

15.
界面力学性能是影响石墨烯/柔性基底复合结构整体力学性能的关键因素,因此对该结构界面切应力传递机理的研究十分必要.考虑了石墨烯和基底泊松效应的影响,本文提出了二维非线性剪滞模型.对于基底泊松比相比石墨烯较大的情况,利用该模型理论研究了受单轴拉伸石墨烯/柔性基底结构的双向界面切应力传递问题.在弹性粘结阶段,导出了石墨烯双向正应变和双向界面切应力的半解析表达式,分析了不同位置处石墨烯正应变和界面切应力的分布规律.导出了石墨烯/柔性基底结构发生界面滑移的临界应变,结果表明该临界应变低于利用经典一维非线性剪滞模型得到的滑移临界应变,并且明显受到石墨烯宽度尺寸以及基底泊松比大小的影响.基于二维非线性剪滞模型建立有限元模型(FEM),研究了界面滑移阶段石墨烯双向正应变和双向界面切应力的分布规律.与一维非线性剪滞模型的结果对比表明,当石墨烯宽度较大时,二维模型和一维模型对石墨烯正应变、界面切应力以及滑移临界应变的计算结果均存在较大差别,但石墨烯宽度很小时,二维模型可近似被一维模型代替.最后,通过与拉曼实验结果的对比,验证了二维非线性剪滞模型的可靠性,并得到了石墨烯/聚对苯二甲酸乙二醇酯(PET)基底结构的界面刚度(100 TPa/m)和界面剪切强度(0.295 MPa).  相似文献   

16.
Molecular dynamics (MD) simulations under transverse shear, uniaxial compression, and pullout loading configurations are reported for multiwall carbon nanotubes (MWCNTs) with different fraction of interwall sp3 bonds. The interwall shear coupling in MWCNTs is shown to have a strong influence on load transfer and compressive load carrying capacity. A new continuum shear-coupled-shell model is developed to predict MWCNT buckling, which agrees very well with all MD results. This work demonstrates that MWCNTs can be engineered through control of interwall sp3 coupling to increase load transfer, buckling strength, and energy dissipation by nanotube pullout, all necessary features for good performance of nanocomposites.  相似文献   

17.
Y. Liu  C. Zhang 《哲学杂志》2013,93(1):43-57
Abstract

This paper examines the thermoelectric behaviour of a thermoelectric thin film bonded to an elastic substrate. A calculation model for thermoelectric thin films is developed based on the singular integral equation method. The interface shear stress is found to exhibit singular behaviour at the ends of the films. Numerical results for the thermal stress distribution in the film and the film/substrate interface are obtained. Effects of film thickness and the substrate to film stiffness ratio on the stress of the film and the stress intensity factor of the interface are identified. The effects of interface electricity conductivity and the elastic–plastic deformation of the film are discussed.  相似文献   

18.
《Composite Interfaces》2013,20(2):165-176
Because of the importance of thermal residual stresses in composite materials, our study aims to compute them by the finite element method. Numerical analysis shows that these stresses need to be taken into account. The interface is affected by these stresses, particularly in the free edge. The discontinuity of the normal stresses along the interface and the shear value at the free edge influence the composite material behaviour during its use (e.g. the composite used as a patch for repairing a crack).  相似文献   

19.
This paper reports on the accuracy and sensitivity of digital speckle pattern interferometry (DSPI) when it is combined with the hole drilling technique for measuring residual stresses. The in-plane displacement field generated by the introduction of a small hole is determined using an automated data analysis approach. This method is based on the calculation of the optical phase distribution through a phase-shifting method and the application of a robust iterative phase unwrapping algorithm. It is experimentally demonstrated that residual stresses can be measured with a relative uncertainty of 7.5%. It is also shown that the minimum value of residual stress that can be determined with the DSPI and hole drilling combined technique is about 10% of the yield stress of the material.  相似文献   

20.
Stresses induced by welding are analyzed from the viewpoint of material deformation behavior. Strain gages are used to measure the residual stresses, and electronic speckle-pattern interferometry is used to analyze the response of the welded work to external force. A tensile load is applied to a butt-welded, thin-plate steel specimen, and the resultant strain field is analyzed with the electronic speckle-pattern interferometry. Comparison is made with the case of a nonwelded specimen of the same material and dimension. The analysis indicates that the residual stress due to welding makes the normal strain due to the external tensile load asymmetric. The asymmetry enhances shear and rotational modes of deformation, generating stress concentration at a point away from the weld where the residual stress is substantially negligible. The observed features are discussed based on physical mesomechanics. Analysis reveals plastic deformation like behavior in the response of the welded specimen to the external force.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号