首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An experimental investigation was carried out on viscous oil–gas flow characteristics in a 69 mm internal diameter pipe. Two-phase flow patterns were determined from holdup time-traces and videos of the flow field in a transparent section of the pipe, in which synthetic commercial oils (32 and 100 cP) and sulfur hexafluoride gas (SF6) were fed at oil superficial velocities from 0.04 to 3 m/s and gas superficial velocities from 0.0075 to 3 m/s.  相似文献   

2.
Previous studies carried out in the early 1990s conjectured that the main compressible effects could be associated with the dilatational effects of velocity fluctuation. Later, it was shown that the main compressibility effect came from the reduced pressure-strain term due to reduced pressure fluctuations. Although better understanding of the compressible turbulence is generally achieved with the increased DNS and experimental research effort, there are still some discrepancies among these recent findings. Analysis of the DNS and experimental data suggests that some of the discrepancies are apparent if the compressible effect is related to the turbulent Mach number, Mt. From the comparison of two classes of compressible flow, homogenous shear flow and inhomogeneous shear flow (mixing layer), we found that the effect of compressibility on both classes of shear flow can be characterized in three categories corresponding to three regions of turbulent Mach numbers: the low-Mr, the moderate-Mr and high-Mr regions. In these three regions the effect of compressibility on the growth rate of the turbulent mixing layer thickness is rather different. A simple approach to the reduced pressure-strain effect may not necessarily reduce the mixing-layer growth rate, and may even cause an increase in the growth rate. The present work develops a new second-moment model for the compressible turbulence through the introduction of some blending functions of Mt to account for the compressibility effects on the flow. The model has been successfully applied to the compressible mixing layers.  相似文献   

3.
The two-phase flow of a hydrophobic ionic liquid and water was studied in capillaries made of three different materials (two types of Teflon, FEP and Tefzel, and glass) with sizes between 200 μm and 270 μm. The ionic liquid was 1-butyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}amide, with density and viscosity of 1420 kg m−3 and 0.041 kg m−1 s−1, respectively. Flow patterns and pressure drop were measured for two inlet configurations (T- and Y-junction), for total flow rates of 0.065–214.9 cm3 h−1 and ionic liquid volume fractions from 0.05 to 0.8. The continuous phase in the glass capillary depended on the fluid that initially filled the channel. When water was introduced first, it became the continuous phase with the ionic liquid forming plugs or a mixture of plugs and drops within it. In the Teflon microchannels, the order that fluids were introduced did not affect the results and the ionic liquid was always the continuous phase. The main patterns observed were annular, plug, and drop flow. Pressure drop in the Teflon microchannels at a constant ionic liquid flow rate, was found to increase as the ionic liquid volume fraction decreased, and was always higher than the single phase ionic liquid value at the same flow rate as in the two-phase mixture. However, in the glass microchannel during plug flow with water as the continuous phase, pressure drop for a constant ionic liquid flow rate was always lower than the single phase ionic liquid value. A modified plug flow pressure drop model using a correlation for film thickness derived for the current fluids pair showed very good agreement with the experimental data.  相似文献   

4.
The behavior of glycerin–water jets flowing into immiscible ambients of Dow Corning 200 fluid was investigated using laser induced fluorescence (LIF). Undistorted images were obtained by matching the index of refraction of the fluids. A sinusoidal perturbation was superposed on the flow to phase lock the drop formation. The forcing frequency dramatically affected the size, spacing, and number of drops that formed within a forcing cycle and the angle between drops and the jet interface just before pinch-off. Two fluid combinations were studied with similar density ratios, but viscosity ratios differing by a factor of 20. The viscosity ratio affected the jet stability as well as pinch-off angles and drop size. Received: 28 January 1999/Accepted: 20 January 2000  相似文献   

5.
The present paper is the Part II of a broad study concerning void fraction and pressure drop for air-water upward external flow across tube bundles. In the Part I, the experimental facility and the data regression procedures were described and the experimental results are presented and discussed. Initially, Part II presents a literature review concerning void fraction and pressure drop predictive methods available in the open literature for two-phase upward flow across tube bundles. Next, the methods from literature are compared among them and with the database presented in paper Part I. Significant discrepancies are observed among the predictive methods, and deviations as high as two orders of magnitude are verified among the predicted values of pressure drop. Then, a new void fraction predictive method is proposed based on the experimental results and on the minimum kinetic energy principle. This method provides satisfactory predictions of the results described in paper Part I and also of independent data from the literature. A new predictive method for frictional pressure drop during two-phase flow based on two-phase multiplier is also proposed. This method predicted 94% of the experimental data obtained in the present study within an error margin of ± 30%, and also provides accurate predictions of independent results for triangular tube bundles gathered in the open literature.  相似文献   

6.
This paper presents a study on a novel water bubbling layer pressure drop and heat transfer experiment that was conducted to investigate the characteristics of pressure drop of air flow across the water bubbling layer. The attempt was to reduce the pressure drop while maintaining a higher value of the heat transfer coefficient. This type of heat transfer between water and merged tubes has potential application in evaporative cooling. To achieve the goal the pressure drop should be reduced by decreasing the bubble layer thickness through the water pump circulation. Pressure drops of air passing through the perforated plate and the water bubbling layer were measured for different heights of water bubbling layer, hole-plate area ratio of the perforated plate and the air velocity through the holes. Experimental data show that the increase of water bubbling layer height and air velocity both increase the pressure drop while the effect of the hole-plate area ratio of the perforated plate on the heat transfer coefficient is relatively complex. The measurements showed that even at a considerably lower height of water bubbling layer the heat transfer coefficient can exceed 5,000 W/m2-K. The heat transfer coefficients of 30 mm high water bubbling layer are higher than that of other higher water bubbling layers tested in the experiments  相似文献   

7.
The present paper is the part I of a broad study concerning void fraction and pressure drop for air-water upward external flow across tube bundles. Experimental results were obtained for liquid and gas superficial velocities ranging from 0.02 to 1.50 m/s and 0.20 to 10.00 m/s, respectively. Void fraction measurements were performed for bubbly flow using a capacitive probe. The test section consisted of a triangular tube bundle counting with 19 mm OD tube and transverse pitch of 24 mm. Initially, the paper describes the test facility and the data regression and experimental procedures. Then, the pressure drop and void fraction measurements are validated based on tests for single-phase flow and quiescent liquid conditions, respectively. Finally, the experimental data are presented and analyzed. In the second part of this study (Part II), a literature review on predictive methods for void fraction and pressure drop is presented. Additionally, these methods are compared with the database presented in Part I and new predictive methods for void fraction and frictional pressure drop are proposed.  相似文献   

8.
Slug flow is commonly observed in gas production offshore fields. At high operation pressure only short hydrodynamic slugs are observed. However, as the offshore fields become older, the operation pressure becomes lower and long slugs may form. At near atmospheric pressures the long slugs may reach a size of 500 pipe diameters or more. Such slugs can cause serious operational failures due to the strong fluctuating pressure. Identifying the operation pressure conditions at which the long slugs appear, may reduce or prevent these negative effects.  相似文献   

9.
In this work, we use nonequilibrium molecular dynamics to simulate a contraction–expansion flow of various systems, namely melts with molecules of various conformations (linear, branched, and star), linear molecules in solution, and a reference Lennard–Jones fluid. The equations for Poiseuille flow are solved using a multiple time scale algorithm extended to nonequilibrium situations. Simulations are performed at constant temperature using the Nose–Hoover dynamics. The main objective of this analysis is to investigate the molecular origin of pressure drop along planar contraction–expansion geometry, varying the length of the contraction, and the effect that different molecular conformations have on the resulting pressure drop along the geometry. Pressure drop is closely related to mass distribution (in neutral and gradient directions) and branching index of molecules. Also, it is shown that remarkable increases of pressure drops are also possible in planar geometries, provided large extensional viscosities combined with moderate values of the first normal stress difference in shear are considered, in addition to considerable reductions of the flow area at the contraction region.  相似文献   

10.
11.
The motion of two immiscible liquids in a plane channel is analyzed for the case in which the flow conditions and the interactions between the liquids and the solid surface maintain the displaced fluid attached to the wall. The Galerkin Finite Element Method is used to compute the velocity field and the configuration of the interface between the two fluids. We compare the residual mass fraction left on the wall with its two counterparts in capillary tubes, namely residual mass fraction and dimensionless layer thickness of the displaced fluid. The main result of this comparison was that although there is a qualitative similarity concerning the layer thickness between the two cases, the residual fraction of mass presented an important difference, showing that when the aspect ratio of the capillary passage is large there is an increase in the displacement efficiency. The thickness of the displaced liquid film attached to the channel walls is a function of the capillary number (Ca) and the viscosity ratio (Nμ). A map of streamlines in the Cartesian space (CaNμ) with the different flow regimes of the problem is presented. We also showed that we can adapt the available analytical results obtained for gas-displacement in capillary tubes to the plane channel case, for low values of Ca.  相似文献   

12.
Gas–liquid slug flow occurs over a wide range of phase flow rates and in a variety of practical applications during gas–liquid two-phase flows. The range of slug flow increases further in narrow pipes (<0.0254 m), undulated pipelines, riser tube, etc. On the other hand, the past literature shows that slug flow is rarely observed for liquid–liquid cases. In the present study, an interest was felt to investigate whether liquid–liquid slug flow occurs in situations known for excessive slugging in gas–liquid cases. For this, experiments have been performed in narrow (0.012 m ID) vertical and horizontal pipes and an undulated pipeline of 0.0254 m internal diameter where the V-shaped undulation comprises of an uphill and a downhill section between two horizontal pipes. The studies have been performed for both peak and valley orientation of the undulation. Kerosene and water have been selected as the test fluids and the optical probe technique has been used to supplement visual observations especially at higher flow rates. The studies have revealed the existence of the slug flow pattern over a wide range of phase flow rates in all the three geometries. Interestingly, it has been noted that the introduction of an undulation induces flow patterns which bear a closer resemblance to gas–liquid flows as compared to liquid–liquid flows through a horizontal pipe of 0.0254 m diameter.  相似文献   

13.
Wavy structure of liquid film in annular gas–liquid flow without liquid entrainment consists of fast long-living primary waves and slow short-living secondary waves. In present paper, results of spectral analysis of this wavy structure are presented. Application of high-speed LIF technique allowed us to perform such analysis in both spatial and temporal domains. Power spectra in both domains are characterized by one-humped shape with long exponential tail. Influence of gas velocity, liquid Reynolds number, liquid viscosity and pipe diameter on frequency of the waves is investigated. When gravity effect is much lesser than the shear stress, similarity of power spectra at different gas velocities is observed. Using combination of spectral analysis and identification of characteristic lines of primary waves, frequency of generation of secondary waves by primary waves is measured.  相似文献   

14.
To promote a better understanding of liquid–liquid two-phase flow behavior, particularly under high pressure, flow patterns of n-hexadecane–CO2 liquid–liquid two-phase upward flow in vertical stainless steel pipes were experimentally investigated. Observations were made in two 0.0015 m I.D. pipes of different lengths (0.068 m and 0.5 m) under high pressure varying from 10.3 to 29.6 MPa using a high pressure visualization system. The total flow rate was fixed at 2.0 × 10−6 m3/min, while the flow rate ratio (φ) varied from 0.05 to 19. Bubbly flow, plug flow, slug flow, annular flow, and near-one-phase flow regions were found in both pipes, while stratified flow was observed only in the 0.068 m pipe. Flow pattern maps were constructed in the flow rate ratio versus pressure graph, which demonstrates significant impacts of flow rate ratio, pipe length, and pressure on flow patterns. These impacts are discussed in detail. To the authors’ best knowledge, this work is the first attempt to observe complex liquid–liquid two-phase flow behavior with flow pattern transitions under high pressure, and contributes to a better understanding of liquid–liquid two-phase flow behavior.  相似文献   

15.
The hydraulic transport of coarse particles in horizontal tubes has been investigated. A physical model for the prediction of the pressure drop and flow patterns is presented. The proposed model is compared with new experimental data and shows good agreement. Comparison with other proposed correlations is also satisfactory.  相似文献   

16.
A particle image velocimetry (PIV) method has been developed to measure the velocity field inside and around a forming drop with a final diameter of 1 mm. The system, including a microscope, was used to image silicon oil drops forming in a continuous phase of water and glycerol. Fluorescent particles with a diameter of 1 μm were used as seeding particles. The oil was forced through a 200 μm diameter glass capillary into a laminar cross-flow in a rectangular channel. The velocity field was computed with a double-frame cross-correlation function down to a spatial resolution of 21 × 21 μm. The method can be used to calculate the shear stress induced at the interface by the cross-flow of the continuous phase and the main forces involved in the drop formation process.  相似文献   

17.
Fischer–Tropsch (F–T) synthesis is an important route to achieve the clean fuel production. The performance of gas–liquid separation equipment involving in the progressive condensation and separation of light and heavy hydrocarbons in the oil-gas products has become a bottleneck restricting the smooth operation of the F–T process. In order to remove the bottleneck, a gas–liquid vortex separator with simple structure, low pressure drop and big separation capacity was designed to achieve the efficient separation between gas and droplets for a long period. The RSM (Reynolds Stress Model) and DPM (Discrete Phase Method) are employed to simulate the flow characteristics and liquid distribution in the separator. The results show that the separation efficiency is influenced by the flow field and liquid phase concentration in the annular zone. The transverse vortex at the top of spiral arm entrains the droplets with small diameter into the upper annular zone. The entrained droplets rotate upward at an angle of about 37.4°. The screw pitch between neighbor liquid threads is about 0.3 m. There is a top liquid ring in the top of annular zone, where the higher is the liquid phase concentration, the lower is the separation efficiency. It is found that by changing the operating condition and the annular zone height the vortex can be strengthened but not enlarged by the inlet velocity. The screw pitch is not affected by both inlet velocity and annular zone height. The liquid phase concentration in the top liquid ring decreases with both the increases of inlet velocity and annular zone height. The total pressure drop is almost not affected by the annular zone height but is obviously affected by the inlet velocity. When the height of annular zone is more than 940 mm, the separation efficiency is not changed. Therefore, the annular zone height of 940 mm is thought to be the most economical design.  相似文献   

18.
Immiscible viscous liquid–liquid two-phase flow patterns and pressure drop characteristics in a circular microchannel have been investigated. Water and silicone oil with a dynamic viscosity of 863 mPa s were injected into a fused silica microchannel with an inner diameter of 250 μm. As the microchannel was initially filled with the silicone oil, an oil film was found to always form and remain on the microchannel wall. Different flow patterns were observed and classified over a wide range of water and oil flow rates. A flow pattern map is presented in terms of Re, Ca, and We numbers. Two-phase pressure drop data have also been collected and analyzed to develop a simple correlation for slug, annular and annular-droplet flow patterns in terms of superficial water and oil velocities.  相似文献   

19.
The study considers the prediction of the entrained liquid fraction in adiabatic gas–liquid annular two-phase flow in vertical pipes. Nine empirical correlations have been tested against an experimental data bank drawn together in this study containing 1504 points for 8 different gas–liquid combinations and 19 different tube diameters from 5.00 mm to 57.1 mm. The correlation of Sawant, Ishii and Mishima and the one of Oliemans, Pots and Trompé were found to best reproduce the available data. A new correlating approach, derived from both physical intuition and dimensional analysis and capable of providing further physical insight into the liquid film atomization process, was proposed and worked better than any of the existing methods. This new correlation is based on the core flow Weber number that is also a controlling dimensionless group in determining the wall shear stress and associated frictional pressure gradient of annular flows.  相似文献   

20.
Pipelines conveying a multiphase mixture must withstand the cyclic induced stresses that occur due to the alternating motion of gas pockets and liquid slugs. Few previous studies have considered gas–liquid slug flow and the associated fluid–structure interaction problems. In this study, experimental and numerical techniques were adopted to simulate and analyze the two-phase slug flow and the associated stresses in the pipe structure. In the numerical simulation, a one-way coupled fluid–structure framework was developed to explore the slug flow interaction with a horizontal pipe assembly under various superficial gas and liquid velocities. A modified Volume of Fluid and finite element methods were utilized to model the fluid and structure domains. The file-based coupling technique was adopted to execute the coupling mechanism. By contrast, slug characteristics were measured experimentally, while Bi-axial strain gauges were used to capture time-varying strain signals. Excellent agreements between the predicted and measured stress results were achieved with a maximum error of 10.2 %. It was found that at constant superficial liquid velocity, the maximum induced stresses on the pipe wall increased with increasing the slug length and slug velocity. While for the slug frequency, the maximum principal stresses decreased with increasing the slug frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号