首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel spinel Li1.15Mn1.96Co0.03Gd0.01O4 + δ was synthesized by high temperature solid-state reaction method. The product was identified as well-defined spinel phase by X-ray diffraction (XRD); the SEM images illustrated that the particle distribution was well-proportioned. The initial special capacity was 126.5 and 128.1 mAh g? 1 at 25 and 50 °C. The fading rate was 0.017% and 0.098% per cycle under 0.5 °C at 25 and 50 °C, respectively. The results showed that Li1.15Mn1.96Co0.03Gd0.01O4 + δ displayed excellent capacity and cycleability.  相似文献   

2.
In an attempt to obtain spinel Li4Ti5O12 with smallest possible grain size and highest possible phase purity via a solid state route, we tried to elevate reactivity of the reactant mixture by mechanical activation and appropriate choice of the starting materials. From the stoichiometric mixture comprising Li2CO3 and 150 nm anatase, we needed to heat at 950 °C for 1 h to obtain 81–88% phase purity (PhP) of Li4Ti5O12 with its average grain size ca 600 nm. After mechanical activation with a multi-ring mill for 30 min, 850 °C was enough to obtain 85–87% pure 500 nm spinel. From a combination of LiNO3 and 50 nm anatase, 90–91% phase pure product with its grain size 240 nm was obtained at 750 °C due to fusion of the nitrate and shorter diffusion path. By using CH3COOLi.2H2O and 50 nm anatase we obtained 130 nm Li4Ti5O12 with its PhP ca 90% by milling the mixture preliminarily calcined at 500 °C for 1 h and heating subsequently at 700 for 1 h.  相似文献   

3.
《Surface science》2002,496(1-2):43-48
Fluorine etching on the Si(1 1 1)-7×7 surfaces using fluorinated fullerene molecules as a fluorine source has been investigated. At room temperature, adsorbed fluorinated fullerene molecules reacted with the Si(1 1 1)-7×7 surface to create a localized distribution of fluorine on the surface. Nanoscale etch pits were created by annealing at 300 °C, due to the adsorption of the fluorine localized around the C60Fx molecules. Annealing at 400 °C resulted in the delocalized fluorine distribution on the surface and healing of the etch pits, due to the enhancement of the diffusion of both the fluorine and silicon atoms. Subsequent annealing at 500 °C led to desorption of SiF2 reactants formed on the surface. The fluorine diffusion process was found to be an elemental process in the etching because the diffusion of adsorbed fluorines is a key for the formation of the SiF2 species and their subsequent desorption.  相似文献   

4.
Aiming at SOFC anode applications, we have synthesized nanometer-sized nickel catalysts supported on hollow spherical particles of samaria-doped ceria (Ni/SDC) by spraying a mixed solution of nickel, samarium, and cerium nitrates into an atmospheric pressure plasma. The as-prepared particles consisted of SDC (average diameter dSDC = ca. 0.8 µm) and uniformly dispersed nanometer-sized NiO particles. When reduced in H2 at 800 °C or 1000 °C, Ni nanoparticles (average diameter dNi = 34 nm) were found to be embedded uniformly into the SDC surface.  相似文献   

5.
Oxides resulting from discrete changes in composition within the quasi-ternary system La0.8Sr0.2CuO2.4 + δ–La0.8Sr0.2CoO3 ? δ–La0.8Sr0.2FeO3 ? δ were investigated under similar experimental conditions with the objective of obtaining an overview of the variation of the relevant properties for possible applications as cathode contact layer in SOFCs. Twenty-two oxide compositions within this system were systematically selected and synthesized under identical conditions by the Pechini method. The distribution of the different crystallographic phases at 1050 °C within this quasi-ternary phase diagram, the DC electrical conductivity at 800 °C and the thermal expansion coefficients are presented. Perovskites of different compositions issued from this ternary diagram were tested as cathode contact material between an La0.8Sr0.2FeO3 cathode and a Crofer22APU interconnect by resistance measurements at 800 °C. The application of a MnCo1.9Fe0.1O4 spinel protection reduced the interfacial reaction between the Crofer22APU and the cathode contact material. Electrical resistance measurements at 800 °C in air up to 1000 h and the analysis by scanning electron microscopy/energy-dispersive X-ray spectroscopy of the sample cross-sections were carried out to verify the surface stability and the electrical performance.  相似文献   

6.
《Solid State Ionics》2006,177(9-10):863-868
Layered Li(Ni0.5Co0.5)1−yFeyO2 cathodes with 0  y  0.2 have been synthesized by firing the coprecipitated hydroxides of the transition metals and lithium hydroxide at 700 °C and characterized as cathode materials for lithium ion batteries to various cutoff charge voltages (up to 4.5 V). While the y = 0.05 sample shows an improvement in capacity, cyclability, and rate capability, those with y = 0.1 and 0.2 exhibit a decline in electrochemical performance compared to the y = 0 sample. Structural characterization of the chemically delithiated Li1−x(Ni0.5Co0.5)1−yFeyO2 samples indicates that the initial O3 structure is maintained down to a lithium content (1  x)  0.3. For (1  x) < 0.3, while a P3 type phase is formed for the y = 0 sample, an O1 type phase is formed for the y = 0.05, 0.1 and 0.2 samples. Monitoring the average oxidation state of the transition metal ions with lithium contents (1  x) reveals that the system is chemically more stable down to a lower lithium content (1  x)  0.3 compared to the Li1−xCoO2 system. The improved structural and chemical stabilities appear to lead to better cyclability to higher cutoff charge voltages compared to that found before with the LiCoO2 system.  相似文献   

7.
Na self-diffusion, Li self-diffusion, Na+–Li+ ion exchange, electrical conductivity, and mechanical relaxation have been studied below Tg on glasses of the system ZrF4–BaF2–LaF3–AF (A=Na, Li), with A=10, 20, 30 mol%. Compared to the transport mechanism in alkali-containing silicate glasses, the mechanisms in these non-oxide glasses are anomalous. Thus the self-diffusion coefficient of Na decreases with increasing NaF content, whereas that of Li increases with increasing LiF content. Both the electrical conductivity and the Na+–Li+ ion exchange reach a minimum at ≈ 20 mol% LiF, and the mechanical relaxation shows one peak for the 20 and 30 mol% LiF-glasses and two peaks for the glass with 10 mol% LiF, evidencing both a contribution of F and Li+ ions to the transport. Moreover, the presence of the three partially interacting mobile species F, Na+, Li+ obviously leads to an anionic–cationic mixed ion effect. Applying the Nernst–Einstein equation to the Li+ transport in LiF-containing glasses shows that its mechanism is dissimilar to that in oxide glasses. Calculated short jump distances possibly can be interpreted as an Li+ movement via energetically suitable sites near F ions. Likewise the Nernst–Planck model, successfully applied to the ionic transport in mixed alkali silicate glasses, obviously does also not hold for the present heavy metal fluoride glasses.  相似文献   

8.
Self-emiting Y(Vx,P1?x)O4 blue nanophosphors with various compositons (x=0.1–0.9) were synthesized by a facile hydrothermal route and subsequently annealed at different temperatures of 800–1100 °C for 2 h. A higher content of vanadate in Y(V,P)O4 nanophosphors resulted in a larger particle growth upon annealing. The blue luminescence under a vacuum ultraviolet excitation increased with an increasing phosphate content. Considering the size and luminescence, Y(V0.1,P0.9)O4 nanophosphors annealed at 800, 1000, and 1100 °C were used for the formation of transparent blue emissive layer. Nanophosphor layer was uniformly deposited on glass substrate by a screen-printing. ~0.9 μm thick nanophosphor layer that was prepared with 1000 °C-annealed Y(V0.1,P0.9)O4 nanophosphor showed a high visible transmittance value of 78%. Transparent blue-emitting test panel of plasma display was simply fabricated using nanophosphor layer/glass as a rear panel and combining it with the front panel used in the current plasma display panel, and their discharge luminance properties were discussed.  相似文献   

9.
《Solid State Ionics》2006,177(19-25):1811-1817
Structural, electronic and transport properties of LFN (LaFe1−zNizO3) and LSCFN (La1−xSrxCo1−y zFeyNizO3) perovskites synthesized by a modified citric acid method were studied. Structure of the samples was characterized by X-ray studies with Rietveld method analysis. Magnetic properties and valence states of iron ions were characterized by 57Fe Moessbauer spectroscopy performed at RT, which were found to be greatly dependent on the chemical composition of the samples. Electrical conductivity was measured in the 20–800 °C temperature range and for some compositions relatively high values (exceeding 100 S cm 1) were observed in the 600–800 °C range. Chemical stability studies in relation to Ce0.8Gd0.2O1.9 electrolyte, performed for selected perovskite samples, revealed decreasing stability with increasing Ni concentration and formation of solid solutions in CGO/perovskite composites. The coefficient of thermal expansion (CTE) of LFN perovskites was found to match that of CGO electrolyte (CTE in the 10–13 · 10 6 K 1 range).  相似文献   

10.
Stoichiometric Ni-bearing ferrite was formed by air oxidation of an iron(II) hydroxide suspension at an initial Ni : Fetot mol ratio (rNi) of 0.20 : 2.80 at pH 10.0 and 65°C. Most of products formed at rNi=0.40 : 2.60 and 0.60 : 2.40 were Ni-bearing ferrites, of which vacancies of Fe3+ ion on the lattice points may be considered. Only Ni, Zn-bearing ferrites were formed in the suspensions at initial (Ni + Zn)  : Fetot mol ratios (rNi + Zn) of 0.20 : 2.80–0.60 : 2.40 at pH 10.0 and 65°C. At higher rNi or rNi + Zn by-products containing Ni, Fe and O42− were formed. The formation of the by-products was depressed in the suspensions containing chloride ions in the place of sulfate ions.  相似文献   

11.
《Solid State Ionics》2006,177(35-36):3205-3210
For application in solid oxide fuel cells La0.8Sr0.2CuO2.4+δ was synthesized and the phase evolution was characterized after quenching from different temperatures and after slow cooling. A single phase perovskite was found after quenching from 950 °C. The electrical conductivity of the La0.8Sr0.2CuO2.4+δ perovskite exhibited metallic behavior reaching values of about 270 S/cm at 800 °C in air. The thermal expansion between 30 and 800 °C gave a thermal expansion coefficient of 11.1 × 10 6 K 1.At higher temperatures, the perovskite was transformed to the K2NiF4-type structure via an intermediate stage that can be best described as a LaSrCuO4 phase with preferential growing of {020} lattice planes. After sintering at 1100 °C and slow cooling in the furnace a phase mixture of (La,Sr)CuO4+δ and (La,Sr)CuO2.4+δ perovskite was obtained. This phase mixture showed higher electrical conductivity (400 S/cm at 800 °C) and smaller thermal expansion coefficient (9.6 × 10 6 K 1) than the single phase La0.8Sr0.2CuO2.4+δ perovskite.  相似文献   

12.
High-purity specimens of Li6CaLa2Ta2O12 and Li6BaLa2Ta2O12 have been successfully synthesized by solid-state reactions. The analytical chemical compositions of these samples were in good agreement with the nominal compositions of Li6CaLa2Ta2O12 and Li6BaLa2Ta2O12. The Rietveld refinements verified that these compounds have the garnet-type framework structure with the lattice constants of a = 12.725(2) Å for Li6CaLa2Ta2O12 and a = 13.001(4) Å for Li6BaLa2Ta2O12. All of the diffraction peaks of X-ray powder diffraction patterns were well indexed on the basis of cubic symmetry with space group Ia-3d. To make a search for Li sites, the electron density distributions were precisely examined by using the maximum entropy method. Li+ ions occupy partially two types of crystallographic site in these compounds: (i) tetrahedral 24d sites, and (ii) distorted octahedral 96h sites, the latter of which are the vacant sites of the ideal garnet-type structure. The present Li6CaLa2Ta2O12 and Li6BaLa2Ta2O12 samples exhibit the conductivity σ = 2.2 × 10? 6 S cm? 1 at 27 °C (Ea = 0.50 eV) and σ = 1.3 × 10? 5 S cm? 1 at 25 °C (Ea = 0.44 eV), respectively.  相似文献   

13.
X.C. Lu  J.H. Zhu  Z.H. Bi 《Solid State Ionics》2009,180(2-3):265-270
Composite materials of YSZ (yttria-stabilized zirconia) with various Ni–Fe alloys were synthesized and evaluated as the solid oxide fuel cell (SOFC) anode using a 200-µm thick YSZ electrolyte as support and YSZ +La0.8Sr0.2MnO3 (LSM) as cathode. The single cell with the YSZ + Ni0.75Fe0.25 anode exhibited the highest performance among all the investigated cells, e.g. a peak power density of 403, 337, 218 and 112 mW/cm2 was achieved with H2 fuel at 900, 850, 800 and 750 °C, respectively. The composite anode with the Ni0.75Fe0.25 alloy also had the lowest polarization resistance of 0.55 Ω·cm2 at 800 °C among all the alloy compositions, indicating that this specific alloy offered a better anode composition than pure Ni. The possible mechanism for the improved performance of Ni with the Fe alloying addition towards H2 oxidation was discussed.  相似文献   

14.
Correlation of phase formation, critical transition temperature Tc, microstructure, and critical current density Jc with sintering temperature has been studied for acetone doped MgB2/Fe tapes. Sintering was performed at 600–850 °C for 1 h in a flowing Ar atmosphere. High boron substitution by carbon was obtained with increasing the sintering temperature; however, the acetone doped samples synthesized at 800 °C contain large size MgB2 grains and more MgO impurities. Incomplete reaction for the acetone doped samples heated at 600 °C result in bad intergrain connectivity. At 4.2 K, the best Jc value was achieved in the acetone doped sample sintered at 700 °C, which reached 24,000 A/cm2 at 10 T and 10,000 A/cm2 at 12 T, respectively. Our results indicate that the small grain size and less impurity were also important for the improvement of JcB properties besides the substitutions of B by C.  相似文献   

15.
《Solid State Ionics》2006,177(19-25):1795-1798
Oxygen deficiency, thermal and chemical expansion of La0.5Sr0.5Fe1−xCoxO3−δ (x = 0, 0.5, 1) have been measured by thermogravimetry, dilatometry and high temperature X-ray diffraction. The rhombohedral perovskite materials transformed to a cubic structure at 350 ± 50 °C. The thermal expansion of the materials up to the onset of thermal reduction was 14–18 × 10 6 K 1. Above 500 °C in air (400 °C in N2), chemical expansion contributed to the thermal expansion and the linear thermal expansion coefficients were significantly higher, 16–35 × 10 6 K 1. The chemical expansion, εc, showed a maximum of 0.0045 for x = 0.5 and 0.0041 for x = 1 at 800–900 °C. The normalized chemical expansion, εcδ, was 0.036 for x = 0.5 and 0.035 for x = 1 at 800 °C. The chemical expansion can be correlated with an increasing ionic radius of the transition metals with decreasing valence state.  相似文献   

16.
《Solid State Ionics》2006,177(35-36):3147-3150
Glassy materials are promising intercalation compounds, due to their open network structure and absence of grain boundaries. Some glasses containing alkali ions and a high concentration of transition metal ions can present mixed ionic-electronic conductivity and are therefore potential candidates for application as cathode material in Li-ion batteries. The present work is devoted to the ternary system xLi2O–(1  x)[0.3V2O5–0.7TeO2] with 0  x  0.4. These compounds were prepared by heat treatment in air at 800 °C followed by traditional quenching. Raman spectroscopy and 51V nuclear magnetic resonance measurements were performed in order to highlight the structural short range order modifications induced by the introduction of the Li2O network modifier. These structural effects can be related to the electrical behaviour, as studied by complex impedance spectroscopy measurements.  相似文献   

17.
《Solid State Ionics》2006,177(9-10):869-875
The electrochemical reduction of molten Li–Na–K carbonates at 450 °C provides “quasi-spherical” carbon nanoparticles with size comprised between 40 and 80 nm (deduced from AFM measurements). XRD analyses performed after washing and heat-treatment at various temperatures have revealed the presence of graphitised and amorphous phases. The d002 values were close to the ideal one obtained for pure graphite. Raman spectroscopy has pointed out surface disordering which increases with increasing temperature of the heat-treatment. The presence of Na and Li on the surface of the carbon powder has been evidenced by SIMS. The maximum Na and Li contents were observed for carbon samples heat-treated at 400 °C. Their electrochemical performances vs. the insertion/deinsertion of lithium cations were studied in 1 M LiPF6–EC : DEC : DMC (2 : 1 : 2). The first charge–discharge cycle is characterised by a high irreversible capacity as in the case of hard-disordered carbon materials. However, the potential profile in galvanostatic mode is intermediate between that usually observed for graphite and amorphous carbon: rather continuous charge–discharge curves sloping between 1.5 and 0.3 V vs. Li / Li+, and successive phase transformations between 0.3 and 0.02 V vs. Li / Li+. The best electrochemical performances were obtained with carbon powders heat-treated at 400 °C which exhibits a reversible capacity value of 1080 mAh g 1 (composition of Li2.9C6). This sample has also both the lowest surface disordering (deduced from Raman spectroscopy), and the highest Na and Li surface contents (deduced from SIMS).  相似文献   

18.
《Solid State Ionics》2006,177(26-32):2313-2316
The operation of langasite (La3Ga5SiO14) resonators as sensors at elevated temperature and controlled atmospheres is examined. This paper focuses on mapping the regimes of gas-insensitive operation of uncoated langasite resonators and the correlation to langasite's defect chemistry for temperatures up to 1000 °C. As a measure of sensitivity, the fundamental resonant mode at 5 MHz is estimated to be determined to within ± 4 Hz by network analysis for resonators operated in air at temperatures below 1000 °C. The calculated frequency shift induced by redox-related reactions in langasite only exceeds the limit of ± 4 Hz below pO2  10 17 bar at 1000 °C, below 10 24 bar at 800 °C and below 10 36 bar at 600 °C. Water vapor is found to shift the resonance frequency at higher oxygen partial pressures. In the hydrogen-containing atmospheres applied here, langasite can be regarded as a stable resonator material above oxygen partial pressures of about 10 13 and 10 20 bar at 800 and 600 °C, respectively.  相似文献   

19.
The dielectric and pyroelectric responses of MgO-modified Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 ceramics were investigated near FR(LT)–FR(HT) phase transition. It was found that MgO additive reduced the FR(LT)–FR(HT) phase transition temperature from 41 °C to room temperature (24 °C). Superior room-temperature pyroelectric properties were obtained in the composition of 0.10 wt% MgO addition without DC bias. The largest pyroelectric coefficient, 65 × 10−8 C cm−2 K−1, was detected. Accordingly, the detectivity figures of merit Fd had maximum values of 20 × 10−5 Pa−1/2, and especially the voltage responsivity Fv = 0.91 m2C−1 is the highest value reported so far among all pyroelectric materials. It shows promising potential for application in uncooled pyroelectric infrared detector.  相似文献   

20.
《Solid State Ionics》2006,177(13-14):1199-1204
Perovskite oxides of the composition BaxSr1−xCo1−yFeyO3−δ(BSCF) were synthesized via a modified Pechini method and characterized by X-ray diffraction, dilatometry and thermogravimetry. Investigations revealed that single-phase perovskites with cubic structure can be obtained for x  0.6 and 0.2  y  1.0. The as-synthesized BSCF powders can be sintered in several hours to nearly full density at temperatures of over 1180 °C. Thermal expansion curves of dense BSCF samples show nonlinear behavior with sudden increase in thermal expansion rate between about 500 °C and 650 °C, due mainly to the loss of lattice oxygen caused by the reduction of Co4+ and Fe4+ to lower valence states. Thermal expansion coefficients (TECs) of BSCF were measured to be 19.2–22.9 × 10 6 K 1 between 25 °C and 850 °C. Investigations showed further that Ba0.5Sr0.5Co0.8Fe0.2O3−δ is chemically compatible with 8YSZ and 20GDC for temperatures up to 800 °C, above which severe reactions were detected. After being heat-treated with 8YSZ or 20GDC for 5 h above 1000 °C, Ba0.5Sr0.5Co0.8Fe0.2O3−δ was completely converted to phases like SrCoO3−δ, BaCeO3, BaZrO3, etc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号