首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Correlation of phase formation, critical transition temperature Tc, microstructure, and critical current density Jc with sintering temperature has been studied for acetone doped MgB2/Fe tapes. Sintering was performed at 600–850 °C for 1 h in a flowing Ar atmosphere. High boron substitution by carbon was obtained with increasing the sintering temperature; however, the acetone doped samples synthesized at 800 °C contain large size MgB2 grains and more MgO impurities. Incomplete reaction for the acetone doped samples heated at 600 °C result in bad intergrain connectivity. At 4.2 K, the best Jc value was achieved in the acetone doped sample sintered at 700 °C, which reached 24,000 A/cm2 at 10 T and 10,000 A/cm2 at 12 T, respectively. Our results indicate that the small grain size and less impurity were also important for the improvement of JcB properties besides the substitutions of B by C.  相似文献   

2.
Yttria–zirconia doped ceria, 10% ZrO2–10% Y2O3–CeO2 (mol%) (CZY) and 0.5 mol% alumina-doped CZY (CZYA), prepared through oxide mixture process, were sintered by isothermal sintering (IS) and two-step sintering (TSS) having as variable the temperature and soaking time. The electrical conductivity of sintered samples was investigated in the 250 to 600 °C temperature range by impedance spectroscopy in air atmosphere. The microstructure was analyzed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Alumina, as additive, improves the grain boundary conductivity of samples sintered at temperatures lower than 1500 °C. Concerning the sintering mode, two-step sintering (TSS) proved to be a good procedure to obtain CZYA samples with high electrical conductivity and density (> 95%) at relatively low sintering temperature and long soaking time.  相似文献   

3.
《Solid State Ionics》2006,177(26-32):2261-2267
Yttria-stabilized zirconia (YSZ) can be used as an oxygen-permeating membrane at elevated temperature (> 1400 °C) due to its chemical and mechanical stability. It was previously shown that the oxygen transport through YSZ membrane in reducing oxygen partial pressure (PO2) was highly influenced by the surface-exchange kinetics that can be improved by porous surface coating layers such as YSZ, GDC (Gd-doped ceria) or YSZ–GDC mixture [H.J. Park, G.M. Choi, J. Eur. Ceram. Soc. 25 (2005) 2577]. However, the increased oxygen flux was still lower than that estimated assuming bulk-diffusion limit and rapidly decreased with time due to the sintering of coating layers and the reaction between bulk YSZ and coating layers. In this study, the oxygen fluxes through YSZ with LaCrO3, GDC + LaCrO3 (bilayer), LaCrO3 + 5 wt.% GDC (mixture), or LaCr0.7Co0.3O3 coatings were measured under controlled PO2 gradient (permeate-side PO2: ∼ 3 × 10 12 atm, feed-side PO2: 2 × 10 10–2 × 10 8 atm) at 1600 °C. The oxygen flux drastically increased with these coatings. The highest increase in oxygen flux was shown with GDC + LaCrO3 (bilayer) coating and was maintained for a long time. The presence of highly catalytic Ce ions while maintaining porous structure in the coating layer may explain the observation. The prevention of formation of resistive layer due to ceria coating may also be partly responsible for the observation.  相似文献   

4.
Thermally stimulated current (TSC) spectra were examined for ethylene–propylene (EP) random co-polymer at different charging voltages Vp with positive and negative polarities. Observed TSC spectra showed two well-separated TSC bands, BL and BH, which respectively appeared in the temperature regions below and above 100 °C. Observed Vp dependence of BL was quite different from that of typical polypropylene homo-polymer: As Vp increased, BL band grew keeping its peak position same at 65 °C, and the band shape unchanged, as if the traps responsible for the BL band are a single set of traps with the same trap depth and capture cross section. The trap depth of BL was about 1.9 eV and 1.7 eV for positively charged EP and talc-containing EP samples, respectively. EP samples also showed unique TSC bands above 100 °C: one is a narrow TSC band peaked at 120 °C and the other is an unusual TSC band which was non-vanishing even at 165 °C just before destruction of samples by their melting. Consequently, the utmost stable charge density in EP co-polymer above 100 °C was found to be 3.5 × 10?4 C/m2 and 6.0 × 10 ?4 C/m2 for positively and negatively charged samples, respectively. These equivalent surface charge densities are much larger than those of usual polypropylene homo-polymer.  相似文献   

5.
Nanocrystalline tin oxide (SnO2) powders were synthesized through wet chemical route using tin metal as precursor. The morphology and optical properties, as well as the effect of sintering on the structural attributes of SnO2 particles were analyzed using Transmission electron microscopy (TEM), UV–visible spectrophotometry (UV–vis) and X-ray diffraction (XRD), respectively. The data revealed that the lattice strain plays a significant role in determining the structural properties of sintered nanoparticles. The particle size was found to be 5.8 nm, 19.1 nm and 21.7 nm for samples sintered at 300 °C, 500 °C, and 700 °C, respectively. Also, the band gaps were substantially reduced from 4.1 eV to 3.8 eV with increasing sintering temperatures. The results elucidated that the structural and optical properties of the SnO2 nanoparticles can be easily modulated by altering sintering temperature during de novo synthesis.  相似文献   

6.
《Current Applied Physics》2009,9(5):1165-1169
The influences of sintering conditions on electrical properties of the 0.8Pb(Zr1/2Ti1/2)O3–0.2Pb(Co1/3Nb2/3)O3 ceramics have been investigated with sintering temperatures of 1175, 1200, 1225, and 1250 °C and dwell times for 2, 6, and 10 h. The crystal structure of dense specimens showed coexistence between tetragonal, rhombohedral and pseudo cubic phases in all sintering temperatures, while tetragonal-rich phase appeared with increasing dwell times. A maximum dielectric constant was observed at sintering condition of 1200 °C for 2 h, while the transition temperature slightly increased with increasing dwell time. All ceramics also showed diffused phase transition behaviors with a minimum diffusivity at sintering condition of 1200 °C for 2 h. In addition, the polarization–electric field (PE) hysteresis loops of the ceramic systems also changed significantly with sintering conditions. Interestingly, the ferroelectric parameters; remnant polarization (Pr) and loop squareness (Rsq) tended to increase with increasing sintering temperatures and dwell times.  相似文献   

7.
The ionic and electronic charge transport was studied for single crystals of 9.5 mol% yttria-stabilized zirconia with additional nitrogen doping (YSZ:N) of up to 7.5 at.% (referred to the anion sublattice and formula unit Zr0.83Y0.17O1.91) as a function of temperature and nitrogen content. The total conductivity being almost equivalent to the oxygen ion conductivity has been measured by AC impedance spectroscopy under vacuum conditions in order to prevent re-oxidation and loss of nitrogen. The electronic conductivity has been determined by Hebb–Wagner polarization using ion-blocking Pt microelectrodes in N2 atmosphere. The ionic conductivity of YSZ:N decreases in the presence of nitrogen at intermediate temperatures up to 1000 °C. The mean activation energy of ionic conduction strongly increases with increasing nitrogen content, from 1.0 eV for nitrogen-free YSZ up to 1.9 eV for YSZ containing 7.3 at.% N. Compared to nitrogen-free YSZ, the electronic conductivity first decreases at nitrogen contents of 2.17 and 5.80 at.%, but then increases again for a sample with 7.53 at.%. At temperatures of 850 °C and above, the presence of the N3? dopant fixes the electrode potential and thus the oxygen partial pressure at the Pt electrode to very low values. This corresponds to a pinning of the Fermi level at a relatively high energy in the upper half of the band gap. At 7.53 at.% N and 950 °C, the oxygen partial pressure in YSZ:N corresponds to pO2 = 3 × 10? 18 bar. At temperatures above 850 °C, even in the presence of a very small oxygen concentration in the surrounding gas phase, the nitrogen ion dopant becomes highly mobile and thus diffuses to the surface where it is oxidized to gaseous N2. The results are discussed in terms of the ionic and electronic defect structures and the defect mobilities in YSZ:N.  相似文献   

8.
Powders of BaYxCe1 ? xO3 ? δ (x = 0, 0.1 and 0.15) with specific surface area of 6–8 m2g? 1 (BET equivalent particle size of 130–160 nm) were prepared by a modified solid-state route using nanocrystalline BaCO3 and CeO2 raw materials. These powders showed excellent densification at relatively low temperatures. Dense (96–97% relative density) ceramics with submicron grain size (0–4–0.6 µm) were obtained after sintering at 1250–1280 °C. Ceramics sintered at 1450 °C revealed only a moderate grain growth (grain size ≤ 2 µm), uniform microstructure and very high density (≥ 98%). The total conductivity of the submicron ceramics at 600 °C was comparable with the reference values reported in the literature, meaning that the high number of grain boundaries was not a limiting factor. On lowering temperature, the contribution of the blocking grain boundaries becomes progressively more important and the conductivity decreases in comparison to coarse-grained ceramics. Microscopic conductivities of grain interior and grain boundary are the same irrespective of grain size meaning that the different macroscopic behaviour is only determined by a geometric factor (a trivial size effect).  相似文献   

9.
《Solid State Ionics》2006,177(13-14):1199-1204
Perovskite oxides of the composition BaxSr1−xCo1−yFeyO3−δ(BSCF) were synthesized via a modified Pechini method and characterized by X-ray diffraction, dilatometry and thermogravimetry. Investigations revealed that single-phase perovskites with cubic structure can be obtained for x  0.6 and 0.2  y  1.0. The as-synthesized BSCF powders can be sintered in several hours to nearly full density at temperatures of over 1180 °C. Thermal expansion curves of dense BSCF samples show nonlinear behavior with sudden increase in thermal expansion rate between about 500 °C and 650 °C, due mainly to the loss of lattice oxygen caused by the reduction of Co4+ and Fe4+ to lower valence states. Thermal expansion coefficients (TECs) of BSCF were measured to be 19.2–22.9 × 10 6 K 1 between 25 °C and 850 °C. Investigations showed further that Ba0.5Sr0.5Co0.8Fe0.2O3−δ is chemically compatible with 8YSZ and 20GDC for temperatures up to 800 °C, above which severe reactions were detected. After being heat-treated with 8YSZ or 20GDC for 5 h above 1000 °C, Ba0.5Sr0.5Co0.8Fe0.2O3−δ was completely converted to phases like SrCoO3−δ, BaCeO3, BaZrO3, etc.  相似文献   

10.
The dielectric and pyroelectric responses of MgO-modified Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 ceramics were investigated near FR(LT)–FR(HT) phase transition. It was found that MgO additive reduced the FR(LT)–FR(HT) phase transition temperature from 41 °C to room temperature (24 °C). Superior room-temperature pyroelectric properties were obtained in the composition of 0.10 wt% MgO addition without DC bias. The largest pyroelectric coefficient, 65 × 10−8 C cm−2 K−1, was detected. Accordingly, the detectivity figures of merit Fd had maximum values of 20 × 10−5 Pa−1/2, and especially the voltage responsivity Fv = 0.91 m2C−1 is the highest value reported so far among all pyroelectric materials. It shows promising potential for application in uncooled pyroelectric infrared detector.  相似文献   

11.
The oxidation of Ni–YSZ cermet as well the reduction of re-oxidized Ni–YSZ cermet was investigated by using temperature-programmed oxidation (TPO), temperature-programmed reduction (TPR) and scanning electron microscope (SEM). The scanning electron microscope (SEM) photographs and temperature-programmed reduction (TPR) profiles indicated that the sintering of smaller nickel oxide crystallites to larger aggregates occurred concurrently with the formation of smaller nickel oxide crystallites from the oxidation of nickel at 800 °C, and the sintering of smaller nickel oxide crystallites at 600 °C was slower than that at 800 °C. The SEM results showed that each Ni particle was separated into a lot of smaller NiO particles during oxidation. The TPO profiles showed that two kinds of nickel particles exist in the anode reduced at 800 and 600 °C, one with high activity towards oxidation for the nickel crystallites directly from reduction, and another one with low activity towards oxidation for the sintered nickel particles. The Ni–YSZ anodes reduced at higher temperature showed higher re-oxidation temperature than the one reduced at lower temperature because of the accelerated passivating and sintering of the smaller nickel particles at higher temperature. The re-oxidation profiles were almost unchanged during redox cycling at 600 °C, whereas the re-oxidation peak temperature decreased during redox cycling at 800 °C, indicating that the primary nickel grains split to smaller ones upon cyclic reduction at higher temperature.  相似文献   

12.
《Solid State Ionics》2006,177(7-8):703-707
A polyphosphazene [NP(NHR)2]n with oligo[propylene oxide] side chains − R = –[CH(CH3)–CH2O]m–CH3 (m = 6  10) was synthesized by living cationic polymerisation and polymer-analogue substitution of chlorine from the intermediate precursor [NPCl2]n using the corresponding primary amine RNH2. The polymer had an average molecular weight of 3.3 × 105 D. Polymer electrolytes with different concentrations of dissolved lithium triflate (LiCF3SO3) were prepared. Mechanically stable polymer electrolyte membranes were formed using UV radiation induced crosslinking of the polymer salt mixture in the presence of benzophenone as photoinitiator. The glass transition temperature of the parent polymer was found to be − 75 °C before cross linking. It increases after crosslinking and with increasing amounts of salt to a maximum of − 55 °C for 20 wt.% LiCF3SO3. The ionic conductivity was determined by impedance spectroscopy in the temperature range 0–80 °C. The highest conductivity was found for a salt concentration of 20 wt.% LiCF3SO3: 6.5 × 10 6 S·cm 1 at 20 °C and 2.8 × 10 4 S cm 1 at 80 °C. The temperature dependence of the conductivities was well described by the MIGRATION concept.  相似文献   

13.
NiO–yttria stabilised zirconia (YSZ) hollow fibres with varying NiO content and a desired microstructure were prepared using a phase inversion technique and sintering. By controlling the fabrication parameters, microstructures with predominately finger-like pores near the inner and outer surfaces and a denser central layer with sponge-like pores were produced, for use as substrates for anode-supported hollow fibre solid oxide fuel cells (HF-SOFC). The NiO–YSZ fibres were reduced to Ni–YSZ at 250–700 °C in hydrogen flowing at 20 cm3 min? 1 to produce Ni–YSZ hollow fibres, the mechanical and electrical properties of which were determined subsequently, reduction to Ni being verified by X-ray diffraction. The effects of NiO concentration and sintering temperature of the fibre precursors on the conductivity, strength and porosity of the reduced hollow fibres were investigated to assess their suitability for use as anode substrates. As expected, increasing Ni concentration increased electrical conductivities and decreased mechanical strength. Sintering temperature had a critical effect in producing axially conductive hollow fibres of sufficient mechanical strength for use as SOFC anodes. The hollow fibres retained their initial microstructure through the reduction process, though ca. 41% volume contraction is predicted on reduction of NiO to Ni, producing increased porosity in the reduced fibres. The mean porosity of the Ni–YSZ hollow fibres was ca. 60% and ca. 40% after sintered at 1250 °C and 1400 °C, respectively. The mean pore sizes for all the fibres after reduction varied between ca. 0.3 and 1 µm. The hollow fibres produced with 60% NiO, of length ca. 300 mm, electrical conductivities of ca. (1–2.25) × 105 S m? 1 and a porosity of ca. 43% are being used currently to construct and test the electrical behaviour of an anode-supported HF-SOFC.  相似文献   

14.
《Solid State Ionics》2006,177(19-25):1843-1848
The electrochemical performance of La0.58Sr0.4Co0.2Fe0.8O3−δ (L58SCF), La0.9Sr1.1FeO4−δ (LS2F) and LSM (La0.65Sr0.3MnO3−δ)/LSM–YSZ (50 wt.% LSM–50 wt.% ZrO2 (8 mol% Y2O3)) cathode electrodes interfaced to a double layer Ce0.8Gd0.2O2−δ (CGO)/YSZ electrolyte was studied in the temperature range of 600 to 850 °C and under flow of 21% O2/He mixture, using impedance spectroscopy and current density–overpotential measurements. The L58SCF cathode exhibited the highest electrocatalytic activity for oxygen reduction, according to the order: LS2F/CGO/YSZ  LSM/LSM–YSZ/CGO/YSZ < L58SCF/CGO/YSZ.  相似文献   

15.
《Solid State Ionics》2006,177(9-10):931-938
NiO-coated YSZ composite powders were synthesized through the Pechini process in order to improve the performance and durability of SOFC anodes. Their microstructures and electrical properties have been investigated with thermal and redox cycling tests. The coverage of NiO crystals on the YSZ surface could be modulated by controlling the composition of the reaction mixture and the ratio of NiO and YSZ. Ni–YSZ electrodes were manufactured by sintering the die-pressed NiO–YSZ pellet at 1400 °C for 3 h, followed by reducing it to 800 °C under hydrogen atmosphere. The anode made from NiO/YSZ composite powder, which has a high homogeneity and plenty of contact sites between Ni and YSZ, has an excellent tolerance against thermal and redox cycling. The maximum power density of a single cell made from NiO/YSZ composite powder was 0.56 W cm 2 at 800 °C in reactive gases of humidified hydrogen and air. It can be concluded that the functional NiO/YSZ composite powder will suppress the degradation of anodes and enhance the long-term and redox stability of the unit cell at elevated temperatures.  相似文献   

16.
Doped lanthanum manganese chromite based perovskite, La0.7A0.3Cr0.5Mn0.5O3 ? δ (LACM, A = Ca, Sr, Ba), on yttria-stabilized zirconia (YSZ) electrolyte is investigated as potential electrode materials for solid oxide fuel cells (SOFCs). The electrical conductivity and electrochemical activity of LACM depend on the A-site dopant. The best electrochemical activity is obtained on the La0.7Ca0.3Cr0.5Mn0.5O3 ? δ/YSZ (LCCM/YSZ) composite electrodes. The conductivity of LCCM is 29.9 S cm? 1 at 800 °C in air, and the electrode polarization resistance (RE) of the LCCM/YSZ composite cathode for the O2 reduction reaction is 0.5 Ω cm2 at 900 °C. The effect of Gd-doped ceria (GDC) impregnation on the LCCM cathode polarization resistances is also studied. GDC impregnation significantly enhances the electrochemical activity of the LCCM cathode. In the case of the 6.02 mg cm? 2 GDC-impregnated LCCM cathode, RE is 0.4 Ω cm2 at 800 °C, ~ 60 times smaller than 24.4 Ω cm2 measured on a LCCM cathode without the GDC impregnation. Finally the electrochemical activities of the doped lanthanum manganese chromites for the H2 oxidation reaction are also investigated.  相似文献   

17.
A chemical solution deposition process was used to grow epitaxial Nd2Mo2O7 (NMO) buffer layers on YSZ substrates to produce YBa2Cu3O7?δ (YBCO) coated conductors. The NMO precursor solution prepared using metal acetylacetonates was spin-coated onto single crystal YSZ substrate of 10 mm × 10 mm in size at 3000 rpm for 30 s and heat-treated at 1000 °C for 2 h in Ar after calcinated at 550 °C for 1 h. The YBCO film was deposited by TFA-MOD route on top of the NMO/YSZ architecture. The phase purity and the crystalline orientation of NMO and YBCO films were evaluated by X-ray diffraction (XRD). Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to observe their microstructure and their surface roughness. The critical current density (Jc) of YBCO film on NMO/YSZ is 1.8 MA/cm2 at 77 K in self-field, which indicates that the Nd2Mo2O7 is a potential buffer for YBCO coated conductor.  相似文献   

18.
《Ultrasonics sonochemistry》2014,21(4):1366-1373
Porous (Ce0.5Zr0.5)O2 solid solutions were prepared by thermolysis (T = 285 °C) or sonolysis (20 kHz, I = 32 W cm−2, Pac = 0.46 W mL−1, T = 200 °C) of Ce(III) and Zr(IV) acetylacetonates in oleylamine or hexadecylamine under argon followed by heat treatment of the precipitates obtained in air at 450 °C. Transmission Electron Microscopy images of the samples show nanoparticles of ca. 4–6 nm for the two synthetic approaches. The powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray and μ-Raman spectroscopy of solids obtained after heat treatment indicate the formation of (Ce0.5Zr0.5)O2 solid solutions with a metastable tetragonal crystal structure for the two synthetic routes. The specific surface area of the samples varies between 78 and 149 m2 g−1 depending on synthesis conditions. The use of Barrett–Joyner–Halenda and t-plot methods reveal the formation of mixed oxides with a hybrid morphology that combines mesoporosity and microporosity regardless of the method of preparation. Platinum nanoparticles were deposited on the surface of the mixed oxides by sonochemical reduction of Pt(IV). It was found that the materials prepared by sonochemistry exhibit better resistance to dissolution during the deposition process of platinum. X-ray photoelectron spectroscopy analysis shows the presence of Pt(0) and Pt(II) on the surface of mixed oxides. Porous (Ce0.5Zr0.5)O2 mixed oxides loaded with 1.5 %wt. platinum exhibit high activity in catalytic wet air oxidation of formic acid at 40 °C.  相似文献   

19.
Sono-dispersion of Ni, Co and Ni–Co over Al2O3–MgO with Al/Mg ratio of 1.5 was prepared and tested for dry reforming of methane. The samples were characterized by XRD, FESEM, PSD, EDX, TEM, BET and FTIR analyses. In order to assess the effect of ultrasound irradiation, Ni–Co/Al2O3–MgO with Co content of 8% prepared via sonochemistry and impregnation methods. The sono-synthesized sample showed better textural properties and higher activity than that of impregnated one. Comparison of XRD patterns indicated that the NiO peaks became broader by increasing Co content over the support. The FESEM images displayed the particles are small and well-dispersed as a result of sonochemistry method. Also, EDX analysis demonstrated better dispersion of Ni and Co as a result of sonochemistry method in confirmation of XRD analysis. The sono-synthesized Ni–Co/Al2O3–MgO as a superior nanocatalyst with Co content of 3% illustrates much higher conversions (97.5% and 99% for CH4 and CO2 at 850 °C), yields (94% and 96% for H2 and CO at 850 °C) and 0.97 of H2/CO molar ratio in all samples using an equimolar feed ratio at 850 °C. During the 1200 min stability test, H2/CO molar ratio remained constant for the superior nanocatalyst.  相似文献   

20.
These last past years, a major interest has been devoted to decrease the working temperature of solid oxide fuel cells (SOFCs) down to about 700 °C.Apatite materials (La10 ? xSrxSi6O27?x/2) are attractive candidates for solid electrolytes, with a high ionic conductivity at these intermediate temperatures. An apatite powder (x = 1) with a 0.75 µm mean particle size, produced by solid state reaction, was tape cast to obtain green sheets with a thickness of about 260 µm.On one hand, the densification mechanism of the apatite ceramic during the intermediate solid state sintering has been approached. It appeared from the kinetical tests performed under isothermal conditions between 1250 and 1550 °C, that densification could be controlled by the diffusion at grain boundaries of the rare-earth element, La, with an activation energy of 470 kJ/mol.On the other hand, conductivity measurements were performed on apatite samples sintered at 1400 and 1500 °C. The ionic conductivity was mainly sensitive to the presence of secondary phases at 1400 °C. The ionic conductivity of the apatite sintered at 1500 °C (mean grain size = 3.9 µm) is equal to 1.2 × 10? 2 S/cm at 700 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号