首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In-situ gas-injection transmission electron microscopy revealed that a pillar grew at the edge of the interface of a gold nanoparticle and a TiO2 substrate during exposure to O2 gas at 100 Pa. The pillar was found to have a titanium-deficient chemical composition of Ti1 ? xO2 (x > 0) by electron energy loss spectroscopy (EELS). The spectra showed a chemical shift of oxygen and titanium ions to have ionic states of Ti3+ and Oy? (y < 3/2). The formation of the Ti1 ? xO2 at the contact edge of gold–Ti1 ? xO2 interface is discussed from the perspective of an O2 affinity, which plays an important role in CO oxidation process of supported gold particle.  相似文献   

2.
The Ir(111) surface is oxidized with gas-phase oxygen atoms under vacuum condition to achieve an oxidation level beyond its saturation coverage for chemisorption. Two surface oxides, rutile IrO2 of (100) domain and corundum Ir2O3 of (001) domain, have been grown at 550 K with different oxygen exposure of 3.6 × 105 L and 7.2 × 105 L respectively. The temperature programmed desorption (TPD) experiment of rutile IrO2(100) shows its desorption curve (at 4 K s? 1) peaks at 750 K, followed by a long tail of less pronounced desorption features. On the other hand, TPD of corundum Ir2O3(001) displays a symmetric trace, peaking at 880 K. Carbon monoxide titration experiments show that adsorbed CO reduces corundum Ir2O3(001) at 400 K, but CO does not adsorb on rutile IrO2(100) and no reduction reaction occurs. Evidently, among the two surface oxides, corundum Ir2O3(001) involves in catalysis of carbon monoxide oxidation, while rutile IrO2(100) does not. The formation of two surface oxides is also compared, we conclude that the atom arrangement favors Ir2O3(001) at the oxide/metal interface.  相似文献   

3.
Layered LiNi0.5Mn0.5 ? xAlxO2 (x = 0, 0.02, 0.05, 0.08, and 0.1) series cathode materials for lithium-ion batteries were synthesized by a combination technique of co-precipitation and solid-state reaction, and the structural, morphological, and electrochemical properties were examined by XRD, FT-IR, XPS, SEM, CV, EIS, and charge–discharge tests. It is proven that the aliovalent substitution of Al for Mn promoted the formation of LiNi0.5Mn0.5 ? xAlxO2 structures and induced an increase in the average oxidation number of Ni, thereby leading to the shrinkage of the lattice volume. Among the LiNi0.5Mn0.5 ? xAlxO2 materials, the material with x = 0.05 shows the best cyclability and rate ability, with discharge capacities of 219, 169, 155, and 129 mAh g? 1 at 10, 100, 200, and 400 mA g? 1 current density respectively. Cycled under 40 mA g? 1 in 2.8–4.6 V, LiNi0. 5Mn0.45Al0.05O2 shows the highest discharge capacity of about 199 mAh g? 1 for the first cycle, and 179 mAh g? 1 after 40 cycles, with a capacity retention of 90%. EIS analyses of the electrode materials at pristine state and state after first charge to 4.6 V indicate that the observed higher current rate capability of LiNi0. 5Mn0.45Al0.05O2 can be understood due to the better charge transfer kinetics.  相似文献   

4.
We examined the electric field-assisted thermionic emission of atomic oxygen radical anion (O?) in a vacuum from fluorine-substituted derivatives of 12CaO·7Al2O3 (C12A7) with a composition of (12 ? x)CaO·7Al2O3·xCaF2 (0  x  0.8). Unsubstituted C12A7 easily decomposed into 5CaO?3Al2O3 (C5A3) and 3CaO?Al2O3 (C3A) above 830 °C during the emission experiment in a vacuum. The decomposition temperature range became narrower as the amount of F? ion substitution increased, e.g. the sample with x = 0.4 kept a single phase after the emission experiment at 900 °C. The emitted anionic species from the x = 0.4 sample were dominated by O? ions (~ 92%) together with a small amount of O2? ions (~ 4%) and F? ions (~ 4%). The absence of an O2 gas supply to the opposite side of the emission surface led to a nearly steady co-emission of O? ions and electrons with a ratio of < 1/1. The O2 gas supply markedly enhanced the O? ion emission, and suppressed the electron emission. A sustainable and high-purity O? ion emission with a current density of 11 nA cm? 2 was achieved at 830 °C with the supply of 40 Pa O2 gas. The similarity in these emission features to the unsubstituted C12A7, together with the improved thermal stability demonstrates that the F? ion-substituted C12A7 is a promising material for higher intensity O? ion emission at higher temperatures.  相似文献   

5.
The series of Gd4 ? xMxAl2O9 ? x/2 (M = Ca, Sr) with x = 0, 0.01, 0.05, 0.10 and 0.25 was prepared by the citrate complexation method. Both Gd4 ? xCaxAl2O9 ? x/2 and Gd4 ? xSrxAl2O9 ? x/2 show the monoclinic cuspidine structure with space group of P21/c up to 0.05–0.1 and 0.01–0.05 mol for Ca and Sr, respectively. Beyond the substitution limit of Gd4Al2O9, GdAlO3 and SrGd2Al2O7 appear as additional phases. The highest electrical conductivity obtained at 900 °C yielded σ = 1.49 × 10? 4 S/cm for Gd3.95Ca0.05Al2O8.98. In comparison, the conductivity of pure Gd4Al2O9 was σ = 1.73 × 10? 5 S/cm. The conductivities determined are in a similar range as those of other cuspidine materials investigated previously. The thermal expansion coefficient of Gd4Al2O9 at 1000 °C was 7.4 × 10? 6 K? 1. The phase transition between 1100 and 1200 °C reported earlier changes with increasing substitution of Ca and Sr.  相似文献   

6.
Temperature-programmed-desorption (TPD) spectra and isothermal desorption rates of D2 molecules from a Si(100) surface have been calculated to reproduce experimental β1, A-TPD spectra and isothermal desorption rate curves. In the diffusion-promoted-desorption (DPD) mechanism, hydrogen desorption from the Si(100) (2 × 1) surfaces takes place via D atom diffusion from doubly-occupied Si dimers (DODs) to their adjacent unoccupied Si dimers (UODs). Taking a clustering interaction among DODs into consideration, coverages θDU of desorption sites consisting of a pair of a DOD and UOD are evaluated by a Monte Carlo (MC) method. The TPD spectra for the β1, A peak are obtained by numerically integrating the desorption rate equation R = νA exp(? Ed, A / kBT)θDU, where νA is the pre-exponential factor and Ed, A is the desorption barrier. The TPD spectra calculated for Ed, A = 1. 6 eV and νA = 2.7 × 109 /s are found to be in good agreement with the experimental TPD data for a wide coverage range from 0.01 to 0.74 ML. Namely, the deviation from first-order kinetics observed in the coverage dependent TPD spectra as well as in the isothermal desorption rate curves can be reproduced by the model simulations. This success in reproducing both the experimental TPD data and the very low desorption barrier validates the proposed DPD mechanism.  相似文献   

7.
Mixed electron hole and oxide ion conducting perovskite-type oxides, La0.8Sr0.2(Ga0.8Mg0.2)1 ? xCrxO3 ? δ (0  x  1.0), were prepared by solid state reaction. The phase stability and the oxygen permeation properties of the oxides were examined as a function of the content of Cr. La0.8Sr0.2(Ga0.8Mg0.2)1 ? xCrxO3 ? δ has a perovskite related tetragonal phase with x = 0.1 to 0.8. The total electrical conductivity of La0.8Sr0.2(Ga0.8Mg0.2)1 ? xCrxO3 ? δ increases with increasing x. The oxygen permeation flux across the La0.8Sr0.2(Ga0.8Mg0.2)1 ? xCrxO3 ? δ membranes at higher temperatures increases with x up to x = 04. The maximum oxygen permeation flux of 1.6 × 10? 7 mol? 1 cm? 2 at 1100 °C in a oxygen activity gradient of air/10? 2 Pa is observed in La0.8Sr0.2(Ga0.8Mg0.2)0.6Cr0.4O3 ? δ. This perovskite-type oxide is stable under an oxygen partial pressure of 7 × 10? 10 Pa at 1000 °C.  相似文献   

8.
Shanwen Tao 《Solid State Ionics》2009,180(2-3):148-153
SnP2O7 and In-doped SnP2O7 have been prepared by an aqueous solution method using (NH4)2HPO4 as phosphorous source. It was found that the solid solution limit in Sn1 ? xInx(P2O7)1 ? δ was at least x = 0.12. All pyrophosphates in the Sn1 ? xInx(P2O7)1 ? δ (x  0.12) series exhibit 3 × 3 × 3 superlattice structures. The conductivities of Sn0.92In0.08(P2O7)1 ? δ in air are 6.5 × 10? 6 and 8.0 × 10? 9 S/cm at 900 and 400 °C, respectively, when prepared by an aqueous solution method and annealed at 1000 °C. The conductivity of undoped SnP2O7 is slightly lower. However, it was also found that the low-temperature conductivities of pyrophosphates annealed only at 650 °C are several orders of magnitude higher than those annealed at 1000 °C, which could be related to a trace amount of an amorphous secondary phase. The peak conductivity was in this case observed at around 250 °C, which is the same temperature as previously observed in In-doped SnP2O7 although the conductivity is still three orders of magnitude lower in the present study. These differences can be related to large differences in particle size and morphology, and all in all, the conductivities of SnP2O7-based materials are very sensitive to the synthetic history.  相似文献   

9.
Nonstoichiometric variation of oxygen content in La2 ? xSrxNiO4 + δ (x = 0, 0.1, 0.2, 0.3, 0.4) and decomposition P(O2) were determined by means of high temperature gravimetry and coulometric titration. The measurements were carried out in the temperature range between 873 and 1173 K and the P(O2) range between 10? 20 and 1 bar. La2 ? xSrxNiO4 + δ showed the oxygen excess and the oxygen deficient compositions depending on P(O2), temperature, and the Sr content. The value of partial molar enthalpy of oxygen approaches zero as δ increases in the oxygen excess region, which indicate that the interstitial oxygen formation reaction is suppressed as δ increase. The relationship between δ and logP(O2) were analyzed by two types of defect equilibrium models. One is a localized electron model, and the other is a delocalized electron model. Both models can well explain the oxygen nonstoichiometry of La2 ? xSrxNiO4 + δ with a regular solution approximation.  相似文献   

10.
We have studied the effect of negative chemical pressure in the RuGd1.5(Ce0.5?xPrx)Sr2Cu2O10?δ with Pr content of 0.0 ? x ? 0.2. This is also investigated using the bond length results obtained from the Rietveld refinement analysis. The c parameter and cell volume increase with x for 0.0 ? x ? 0.15. The width of the resistivity transition also increases with Pr concentration, indicating higher inhomogeneity and oxygen deficiency. The difference in the ionic valences of Pr3+,4+ and Ce4+ causing different hole doping, the difference in the ionic radii, and oxygen stoichiometry affect the superconducting transition. The magnetoresistance shows a cusp around 135 K which lies between the antiferromagnetic and ferromagnetic transition temperatures, which is probably due to the presence of a spin glass region. There exist two magnetic transition temperatures for 0.0 ? x ? 0.2 which respectively change from TM = 155 K to 144 K and from Tirr = 115 K to 70 K. The magnetization versus applied magnetic field isotherms at 77 K and 300 K show that the remanent magnetization and coercivity are lower for samples with higher Pr content.  相似文献   

11.
In this paper we investigate the properties of polycrystalline series of Ru1?xCrxSr2Eu1.5Ce0.5Cu2O10?δ (0.0 ? x ? 0.40) by resistivity, XRD and dc magnetization measurements. EuRu-1222 is a reported magneto superconductor with Ru spins magnetic ordering at temperatures near 100 K and superconductivity occurs in Cu–O2 planes below Tc ? 40 K. The exact nature of Ru spins magnetic ordering is still being debated and no conclusion has been reached yet. In this work, we found the superconducting transition temperature Tc = 20 K from resistivity and dc magnetization measurements for pristine sample. DC magnetization measurements exhibited ferromagnetic like transition for all samples.  相似文献   

12.
Chemical interactions between the Ba2YCu3O6+x superconductor and the LaMnO3 buffer layers employed in coated conductors have been investigated experimentally by determining the phases formed in the Ba2YCu3O6+x–LaMnO3 system. The Ba2YCu3O6+x–LaMnO3 join within the BaO–(Y2O3–La2O3)–MnO2–CuOx multi-component system is non-binary. At 810 °C (pO2 = 100 Pa) and at 950 °C in purified air, four phases are consistently present along the join, namely, Ba2?x(La1+x?yYy)Cu3O6+z, Ba(Y2?xLax)CuO5, (La1?xYx)MnO3, (La,Y)Mn2O5. The crystal chemistry and crystallography of Ba(Y2?xLax)CuO5 and (La1?xYx)Mn2O5 were studied using the X-ray Rietveld refinement technique. The Y-rich and La-rich solid solution limits for Ba(Y2?xLax)CuO5 are Ba(Y1.8La0.2)CuO5 and Ba(Y0.1La1.9)CuO5, respectively. The structure of Ba(Y1.8La0.2)CuO5 is Pnma (No. 62), a = 12.2161(5) Å, b = 5.6690(2) Å, c = 7.1468(3) Å, V = 494.94(4) Å3, and Dx = 6.29 g cm?3. YMn2O5 and LaMn2O5 do not form solid solution at 810 °C (pO2 = 100 Pa) or at 950 °C (in air). The structure of YMn2O5 was confirmed to be Pbam (No. 55), a = 7.27832(14) Å, b = 8.46707(14) Å, c = 5.66495(10) Å, and V = 349.108(14) Å3. A reference X-ray pattern was prepared for YMn2O5.  相似文献   

13.
Hierarchical structured Co-doped SnO2 nanoparticles are prepared by a low temperature hydrothermal process. The structural and surface morphologies of the SnO2 and Sn1?xCoxO2 nanoparticles are studied by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The Sn1?xCoxO2 nanoparticles form with a tetragonal rutile structure during the hydrothermal process without further calcination. The pseudocapacitance behavior of the Sn1?xCoxO2 nanoparticles is characterized by cyclic voltammetry (CV) in 1.0 M H2SO4 electrolyte. The specific capacitance (SC) is found to increase with an increase in cobalt content. A maximum SC of 840 F g?1 is obtained for a Sn0.96Co0.04O2 composite at a 10 mV s?1 scan rate.  相似文献   

14.
《Solid State Ionics》2006,177(13-14):1163-1171
Oxygen non-stoichiometry and electrical conductivity of the Pr2−xSrxNiOδ series with x = 0.0–0.5 were investigated in Ar/O2 (pO2 = 2.5 to 21 000 Pa) within a temperature range of 20–1000 °C. The equilibrium values of oxygen non-stoichiometry and electrical conductivity of these nickelates were determined as functions of temperature and oxygen partial pressure (pO2). The nickelates with x = 0–0.5 appear to be p-type semiconductors in the investigated temperature and pO2 ranges. The nickelates with x = 0.3–0.5 show very feebly marked pO2 dependencies of the conductivity. Pr1.7Sr0.3NiOδ shows the anomalies of the conductivity versus oxygen partial pressure which can be related to the orthorhombic–tetragonal crystal structure transformations. The conductivity of the Pr2−xSrxNiOδ samples correlates with the average oxidation state of the nickel cations. The samples with x = 0.5 have the highest nickel oxidation state (≈ 2.5+), the highest [Ni3+]/[Ni2+] ratio close to 1 and show the highest conductivity (≈ 120 S/cm) in the whole pO2 and temperature ranges investigated.  相似文献   

15.
Michael A. Henderson 《Surface science》2010,604(19-20):1800-1807
The photochemical properties of the Cr-terminated α-Cr2O3(0001) surface were explored using methyl bromide (CH3Br) as a probe molecule. CH3Br adsorbed and desorbed molecularly from the Cr-terminated α-Cr2O3(0001) surface without detectable thermal decomposition. Temperature programmed desorption (TPD) revealed a CH3Br desorption state at 240 K for coverages up to 0.5 ML, followed by more weakly bound molecules desorbing at 175 K for coverages up to 1 ML. Multilayer exposures led to desorption at ~ 130 K. The CH3Br sticking coefficient was unity at 105 K for coverages up to monolayer saturation, but decreased as the multilayer formed. In contrast, pre-oxidation of the surface (using an oxygen plasma source) led to capping of surface Cr3+ sites and near complete removal of CH3Br TPD states above 150 K. The photochemistry of chemisorbed CH3Br was explored on the Cr-terminated surface using post-irradiation TPD and photon stimulated desorption (PSD). Irradiation of adsorbed CH3Br with broad band light from a Hg arc lamp resulted in both photodesorption and photodecomposition of the parent molecule at a combined cross section of ~ 10? 22 cm2. Photodissociation of the CH3–Br bond was evidenced by both CH3 detected in PSD and Br atoms left on the surface. Use of a 385 nm cut-off filter effectively shut down the photodissociation pathway but not the parent molecule photodesorption process. From these observations it is inferred that d-to-d transitions in α-Cr2O3, occurring at photon energies < 3 eV, do not significantly promote photodecomposition of adsorbed CH3Br. It is unclear to what extent band-to-band versus direct CH3Br photolysis play in CH3–Br bond dissociation initiated by more energetic photons.  相似文献   

16.
《Solid State Ionics》2006,177(13-14):1149-1155
The Lu2+xTi2−xO7−x/2 (x = 0; 0.052; 0.096; 0.286; 0.44; 0.63; 33.3–49 mol% Lu2O3) nanoceramics with partly disordered pyrochlore-type structure are prepared by sintering freeze-dried powders obtained by a co-precipitation technique with 1600 °C annealing. Similar to pyrochlore-like compositions in the zirconate system, some of the new titanates are good oxide-ion conductors in air. The new solid-state electrolytes have oxide-ion conductivity in the interval of 1.0 × 10 3  2.5 × 10 S/cm at 740 °C in air. This value of conductivity is comparable with that of ZrO2/Y2O3 ceramics. The conductivity of Lu2+xTi2−xO7−x/2 depends on the chemical composition. The highest ionic conductivity is exhibited by nearly stoichiometric Lu2+xTi2−xO7−x/2 (x = 0.096; 35.5 mol% Lu2O3) material containing ∼ 4.8 at.% LuTi anti-site defects.  相似文献   

17.
The interactions of glycine (Gly) with amorphous solid water (ASW) nanolayers (≤ 100 ML), vapor-deposited on single crystalline AlOx surfaces at 100 K, have been investigated by near-edge X-ray absorption fine structure spectroscopy (NEXAFS) at the oxygen K-edge, temperature-programmed thermal desorption (TPD), X-ray photoelectron spectroscopy (XPS), and temperature-dependent work function measurements. Gly-on-ASW, ASW-on-Gly, and Gly on top of ASW-on-Gly ultrathin films have been fabricated. In contrast to the uniform ASW films grown directly on the hydrophilic AlOx, water molecules adsorb on the hydrophobic Gly films in the form of 3D ASW clusters. This leads to significant differences in the NEXAFS and work function data obtained from ASW-on-AlOx and ASW-on-Gly films, respectively. Furthermore, these structural differences influence the chemical state of Gly molecules (neutral vs. zwitterionic) adsorbed on top of ASW films. N1s XPS measurements revealed an increased amount of neutral Gly molecules in the film top-deposited on the ASW-on-Gly structure in comparison to the neutral Gly in the films directly condensed on AlOx or grown on the ASW substrate. H2O TPD spectra demonstrate that the crystallization and desorption processes of ASW are affected in a different way by the Gly layers, top-deposited on to ASW-on-AlOx and ASW-on-Gly films. At the same time, Gly adlayers sink into the ASW film during crystallization/desorption of the latter and land softly on the alumina surface in the form of zwitterionic clusters.  相似文献   

18.
The chemistry and photochemistry of methylene bromide (CD2Br2) on the rutile TiO2(110) surface was probed using temperature programmed desorption (TPD). CD2Br2 desorbed in three desorption states at 145, 160 and 250 K tentatively assigned to desorption from the multilayer, from an η1-CD2Br2 species and a bridging η2-CD2Br2 species, respectively. The latter two TPD states presumably involve binding of CD2Br2 molecules to the surface through Br coordination at five-coordinate Ti4+ surface sites. The 160 and 250 K TPD states saturated at coverages of 1.0 and 0.33 ML, respectively, where 1 ML is equivalent to the surface Ti4+ site density (5.2 × 1014 cm? 2). No thermal decomposition of CD2Br2 was observed on either the clean surface or with preadsorbed O2. UV irradiation of CD2Br2 on TiO2(110) resulted in predominately photodesorption, with trace amounts of photodecomposition evidenced in TPD. The rate of CD2Br2 photodesorption from TiO2(110) occurred with a low cross section (~ 2 × 10? 21 cm2) similar to that expected from direct optical excitation of CD2Br2. This observation suggests that charge carriers generated in TiO2(110) were no more effective in activating adsorbed CD2Br2 molecules than would be expected through direct molecular excitation. These findings suggest that photocatalytic destruction of halocarbons such as CD2Br2 on TiO2 may preferentially occur though indirect processes (such as OH radical attack) as opposed to direct electron transfer processes involving charge carriers generated in TiO2 by bandgap excitation.  相似文献   

19.
《Current Applied Physics》2010,10(1):333-336
Observation of room temperature ferromagnetism in Fe doped In2O3 samples (In1−xFex)2O3 (0  x  0.07) prepared by co-precipitation technique is reported. Lattice parameter obtained from powder X software shows distinct shrinkage of the lattice constant indicating an actual incorporation of Fe ions into the In2O3 lattice. X-ray diffraction data measurements show that the entire sample exhibits single phase polycrystalline behavior. SEM micrographs showed the prepared powder was in the range 25–36 nm. SEM EDS mapping showed the presence of Fe and In ions in the Fe doped In2O3 sample. The highest remanence magnetization moment (6.624 × 10−4 emu/g) is reached in the sample with x = 0.03.  相似文献   

20.
Hongjie Zhang  Gang Chen  Xin Li 《Solid State Ionics》2009,180(36-39):1599-1603
Photocatalysts Bi4Ti3 ? xCrxO12(x = 0.00, 0.06, 0.15, 0.30, 0.40, and 0.50) with perovskite structure were synthesized by sol–gel method and their electronic structures and photocatalytic activities were investigated. The Bi4Ti2.6Cr0.4O12 photocatalyst exhibited the highest performance of H2 evolution in methanol aqueous solution (58.1 μmol h? 1 g? 1) under visible light irradiation (λ > 400 nm) without a co-catalyst, whereas no H2 evolution is observed for Bi4Ti3O12 under the same conditions. The UV–vis spectra indicated that the Bi4Ti2.6Cr0.4O12 had strong photoabsorption in the visible light region. The results of density functional theory (DFT) calculation illuminate that the conduction bands of Bi4Ti3O12 are mainly attributable to the Ti 3d + Bi 6p orbitals, and the valence bands are composed of O 2p + Bi 6s hybrid orbitals, while the conduction bands of chromium-doped Bi4Ti3O12 are mainly attributable to the Ti 3d + Bi 2p + Cr 3d orbitals, and the O 2p + Cr 3d hybrid obitals are the main contribution to the valence band.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号