首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fully-developed turbulent flow in a concentric annulus, r1/r2 = 0.5, Reh = 12,500, with the outer wall rotating at a range of rotation rates N = Uθ,wall/Ub from 0.5 up to 4 is studied by large-eddy simulations. The focus is on the effects of moderate to very high rotation rates on the mean flow, turbulence statistics and eddy structure. For N up to ∼2, an increase in the rotation rate dampens progressively the turbulence near the rotating outer wall, while affecting only mildly the inner-wall region. At higher rotation rates this trend is reversed: for N = 2.8 close to the inner wall turbulence is dramatically reduced while the outer wall region remains turbulent with discernible helical vortices as the dominant turbulent structure. The turbulence parameters and eddy structures differ significantly for N = 2 and 2.8. This switch is attributed to the centrifuged turbulence (generated near the inner wall) prevailing over the axial inertial force as well as over the counteracting laminarizing effects of the rotating outer wall. At still higher rotation, N = 4, the flow gets laminarized but with distinct spiralling vortices akin to the Taylor–Couette rolls found between the two counter-rotating cylinders without axial flow, which is the limiting case when N approaches to infinity. The ratio of the centrifugal to axial inertial forces, Ta/Re2  N2 (where Ta is the Taylor number) is considered as a possible criterion for defining the conditions for the above regime change.  相似文献   

2.
The flow field of a channel rotating about the streamwise axis is analyzed experimentally and numerically. The current investigations were carried out at a bulk velocity based Reynolds number of Rem = 2850 and a friction velocity based Reynolds number of Reτ = 180, respectively. Particle-image velocimetry (PIV) measurements are compared with large-eddy simulation data to show earlier direct numerical simulation findings to generate too large a reverse flow region in the center region of the spanwise flow. The development of the mean spanwise velocity distribution and the influence of the rotation on the turbulent properties, i.e., the Reynolds stresses and the two-point correlations of the flow, are confirmed in both investigations. The rotation primarily influences those components of the Reynolds shear stresses, which contain the spanwise velocity component. The size of the correlation areas and thus the length scales of the flow generally grow in all three coordinate directions leading to longer structures. Furthermore, experimental results of the same channel flow at a significantly lower bulk Reynolds number of Rem, l = 665, i.e., a laminar flow in a non-rotating channel, are introduced. The experiments show the low Reynolds number flow to become turbulent under rotation and to develop the same characteristics as the high Reynolds number flow.  相似文献   

3.
The paper gives the results of the DNS/LES which was performed to investigate the transitional and turbulent non-isothermal flows within a rotor/stator cavity. Computations were performed for the cavity of aspect ratio L = 2–35, Rm = 1.8 and for rotational Reynolds numbers up to 290000. The main purpose of the investigations was to analyze the influence of aspect ratio and Reynolds number on the flow structure and heat transfer. The numerical solution is based on a pseudo-spectral Chebyshev–Fourier–Galerkin collocation approximation. The time scheme is semi-implicit second-order accurate, which combines an implicit treatment of the diffusive terms and an explicit Adams–Bashforth extrapolation for the non-linear convective terms. In the paper we analyze distributions of the Reynolds stress tensor components, the turbulent heat flux tensor components, Nusselt number distributions and the turbulent Prandtl number and other structural parameters, which can be useful for modeling purposes. Selected results are compared with the experimental data obtained for single heated rotating disk by Elkins and Eaton (2000).  相似文献   

4.
The swirling flow between a rotating lid and a stationary cylinder is studied experimentally. The flow is governed by two parameters: the ratio of container height to disk radius, h, and the Reynolds number, Re, based on the disk angular velocity, cylinder radius and kinematic viscosity of the working liquid. For the first time, the onset of three-dimensional flow behavior is measured by combining the high spatial resolution of particle image velocimetry and the temporal accuracy of laser Doppler anemometry. A detailed mapping of the transition scenario from steady and axisymmetric flow to unsteady and three-dimensional flow is investigated for 1 ≥ h ≥ 3.5. The flow is characterized by the development of azimuthal modes of different wave numbers. A range of different modes is detected and critical Reynolds numbers and associated frequencies are identified. The results are compared to the numerical stability analysis of Gelfgat et al. (J Fluid Mech 438:363–377, 2001). In most cases, the measured onset of three-dimensionality is in good agreement with the numerical results and disagreements can be explained by bifurcations not accounted for by the numerical stability analysis.  相似文献   

5.
The present work develops a theoretical model of rotational convection and uses it to investigate the dynamical responses of the flow and heat transfer between two disks rotating at different rates under the influences of time-dependent disturbances. The unsteady non-isothermal flow model is formulated by extending a recently developed steady-state similarity model of axi-symmetric rotational convection. In the new model all the rotation-induced buoyancy forces are considered. Using one disk as reference, effects of the time-dependent changes in wall temperature or rotating rate of the other disk on the flow and heat transfer are explored. Various rotational modes with asymptotic or fluctuating change in boundary condition of temperature or disk rotation are studied. The present time-dependent model for this non-isothermal rotating flow is numerically solved by a finite-difference method. By using the present results, the complicated flow and heat transfer mechanisms with thermal-flow coupling in the class of time-dependent rotational convection are manifested.  相似文献   

6.
We present an experimental benchmark database for the transitional cavity flow. The database is obtained by planar Particle Image Velocimetry measurements at the median plane of the cavity model, for Reynolds numbers between 6300 and 19,000 based on the cavity height. A detailed uncertainty analysis of the experimental results is performed via the correlation statistics method for PIV uncertainty quantification and linear error propagation.The experimental results are compared to two-dimensional Reynolds-Averaged Navier Stokes (RANS) numerical simulations with different turbulence models. It is shown that, when the standard k-ω turbulence model is employed, the discrepancy between numerical simulations and experimental results exceeds the uncertainty of the latter. Conversely, RANS simulations with the SST k-ω turbulence model agree well with the experimental data in terms of time-averaged flow properties; however, the turbulent kinetic energy results present significant discrepancies at all considered Reynolds numbers. The data presented in this paper is made available for open-access download via the 4TU.ResearchData repository with DOI: https://doi.org/10.4121/14061233.  相似文献   

7.
In this paper large-eddy simulation is used to study buoyancy-induced flow in a rotating cavity with an axial throughflow of cooling air. This configuration is relevant in the context of secondary air systems of modern gas turbines, where cooling air is used to extract heat from compressor disks. Although global flow features of these flows are well understood, other aspects such as flow statistics, especially in terms of the disk and shroud boundary layers, have not been studied. Here, previous work for a sealed rotating cavity is extended to investigate the effect of an axial throughflow on flow statistics and heat transfer. Time- and circumferentially-averaged results reveal that the thickness of the boundary layers forming near the upstream and downstream disks is consistent with that of a laminar Ekman layer, although it is shown that the boundary layer thickness distribution along the radial direction presents greater variations than in the sealed cavity case. Instantaneous profiles of the radial and azimuthal velocities near the disks show good qualitative agreement with an Ekman-type analytical solution, especially in terms of the boundary layer thickness. The shroud heat transfer is shown to be governed by the local centrifugal acceleration and by a core temperature, which has a weak dependence on the value of the axial Reynolds number. Spectral analyses of time signals obtained at selected locations indicate that, even though the disk boundary layers behave as unsteady laminar Ekman layers, the flow inside the cavity is turbulent and highly intermittent. In comparison with a sealed cavity, cases with an axial throughflow are characterised by a broader range of frequencies, which arise from the interaction between the laminar jet and the buoyant flow inside the cavity.  相似文献   

8.
A computer program has been developed to predict laminar source-sink flow in a rotating cylindrical cavity. Although the program is based on a standard finite difference technique for recirculating flow, it incorporates two novel features. Step changes in grid size are employed to obtain sufficient resolution in the boundary layers and special treatment is given to the solution of the pressure correction equations, in the ‘SIMPLE’ algorithm, in order to improve the convergence properties of the method. Results are presented both for the flow in an infinite rotating cylindrical annulus and a finite rotating cylindrical cavity, with the inner cylindrical surface acting as a uniform source and the outer cylinder as a sink. These show good agreement with existing analytical solutions and illustrate some of the problems associated with the computation of rapidly rotating flows.  相似文献   

9.
10.
Subgrid-modelling in LES of compressible flow   总被引:1,自引:0,他引:1  
Subgrid-models for Large Eddy Simulation (LES) of compressible turbulent flow are tested for the three-dimensional mixing layer. For the turbulent stress tensor the recently developed dynamic mixed model yields reasonable results.A priori estimates of the subgrid-terms in the filtered energy equation show that the usually neglected pressure-dilatation and turbulent dissipation rate are as large as the commonly retained pressure-velocity subgrid-term. Models for all these terms are proposed: a similarity model for the pressure-dilatation, similarity andk-dependent models for the turbulent dissipation rate and a dynamic mixed model for the pressure-velocity subgrid-term. Actual LES demonstrates that for a low Mach number all subgrid-terms in the energy equation can be neglected, while for a moderate Mach number the effect of the modelled turbulent dissipation rate is larger than the combined effect of the other modelled subgrid-terms in the filtered energy equation.  相似文献   

11.
The objective of the current study is to examine the course of events leading to stall just before its occurrence. The stall mechanisms are very sensitive to the transition that the boundary layer undergoes near the leading edge of the profile by a so-called laminar separation bubble (LSB). In order to provide helpful insights into this complex flow, a zonal Reynolds-averaged Navier–Stokes (RANS)/large-eddy simulation (LES) simulation of the flow around an airfoil near stall has been achieved and its results are presented and analyzed in this paper. LSB has already been numerically studied by direct numerical simulation (DNS) or LES, but for a flat plate with an adverse pressure gradient only. We intend, in this paper, to achieve a detailed analysis of the transition process by a LSB in more realistic conditions. The comparison with a linear instability analysis has shown that the numerical instability mechanism in the LSB provides the expected frequency of the perturbations. Furthermore, the right order of magnitude for the turbulence intensities at the reattachment point is found.   相似文献   

12.
Exact asymptotic expansions for heat transfer in laminar forced flow against a non-isothermal rotating disk are obtained for large and small Prandtl numbers using a perturbation method. The surface temperature of the disk is assumed to vary according to a power law with the radial distance. The results point out the erroneous terms in the existing asymptotic solutions and give the further higher order corrections to them.
Zusammenfassung Mit Hilfe einer Störungsmethode werden exakte asymptotische Entwicklungen für den Wärmeübergang in laminarer Zwangskonvektion gegen eine nichtisotherme rotierende Scheibe für kleine und große Prandtl-Zahlen erhalten. Die Oberflächentemperatur soll nach einem Potenzgesetz vom Radius abhängen. Die Ergebnisse zeigen die Fehler in den bisherigen Lösungen auf und geben die Korrekturen höherer Ordnung.
  相似文献   

13.
Summary We study here stability of non-isothermal flow between two closely spaced, heat conducting, infinite parallel flat plates of lengthl and distanceh apart. Fluid enters uniformly alongx = 0 at temperatureT 1 >T w the plate temperature. The flow non-uniformity is assumed to occur due to coupling between the energy equation, which describes the heat transfer mechanism between fluid and channel walls, and the flow equation which includes the temperature dependence of viscosity.The model for the flow assumes that similarity profiles exist for velocity and temperature in the flow direction. The stability of the unidirectional flow by a linearized first order perturbation analysis of the proposed model is examined.Notation b rheological parameter of the fluid defined by eq. [4] - B dimensionless viscosity-temperature parameter defined by eq. [11] - C rheological parameter defined by eq. [4] - h distance between the two parallel plates, ft. - H a thermal transfer coefficient (l/h) - l length of the plates, ft. - p pressure - P inlet pressure - G z Graetz number defined by eq. [11] - t time, h - T mean temperature as defined by eq. [2] - T 1 inlet temperature - u velocity vector withu x ,u y ,u z as component velocities - v mean velocity vector as defined by eq. [1] - V mean steady state axial velocity - x, y, z Cartesian coordinate system - w refers to wall condition - thermal diffusivity, ft2/h - A effective thermal diffusivity tensor - dimensionlessx coordinate - wave number iny direction - dimensionless wave number iny direction - µ 0 viscosity of fluid - density of fluid - dimensionless velocity inx direction - growth rate of disturbances - dimensionless growth rate - proportionality constant for heat generation in eq. [5] With 4 figures  相似文献   

14.
LES of the flow around two cylinders in tandem   总被引:1,自引:0,他引:1  
  相似文献   

15.
In this paper, we present a Bayesian framework for estimating joint densities for large eddy simulation (LES) sub‐grid scale model parameters based on canonical forced isotropic turbulence direct numerical simulation (DNS) data. The framework accounts for noise in the independent variables, and we present alternative formulations for accounting for discrepancies between model and data. To generate probability densities for flow characteristics, posterior densities for sub‐grid scale model parameters are propagated forward through LES of channel flow and compared with DNS data. Synthesis of the calibration and prediction results demonstrates that model parameters have an explicit filter width dependence and are highly correlated. Discrepancies between DNS and calibrated LES results point to additional model form inadequacies that need to be accounted for. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
This paper presents Large Eddy Simulations (LES) of flow around a four-vehicle platoon when one of the platoon members was forced to undergo in-line oscillations. The LES were made at the Reynolds number of 105 based on the height of the vehicles. Combinations of two different frequencies corresponding to non-dimensional frequencies at the Strouhal numbers St1 = 0.025 and St2 = 0.013 and two oscillation amplitudes were used in this study. The methodology was validated by comparisons with data from previous experimental investigations. In order to highlight the dynamic effects, comparisons were made with steady results on a single vehicle and on a four-vehicle platoon. Large differences were found in the flow structures between quasi-steady and dynamic results. Furthermore, the behavior of the drag coefficient of the upstream neighbor of the oscillating model was investigated.  相似文献   

17.
18.
This article presents the high-order algorithms that we have developed for large-eddy simulation of incompressible flows, and the results that have been obtained for the 3D turbulent wake of a cylinder at a Reynolds number of Re=3900. To cite this article: R. Pasquetti, C. R. Mecanique 333 (2005).  相似文献   

19.
Low-Reynolds-number aerodynamic performance of small-sized air vehicles is an area of increasing interest. In this study, low-Reynolds-number flows past an SD7003 airfoil are investigated to understand important viscous features of laminar separation and transitional flow followed by the complicated behavior of the flow reattachment process. In order to satisfy the three-dimensional (3D) requirement of the code, a simple “3D wing” is constructed from a two-dimensional (2D) airfoil. A parametric study of large eddy simulation (LES) on the airfoil flows at Re = 60,000 is performed. Effects of grid resolution and sub-grid scale (SGS) models are investigated. Although 3D effects cannot be accurately captured owing to the limitation of the grid resolution in the spanwise direction, the preliminary LES calculations do reveal some important flow characteristics such as leading-edge laminar separation and vortex shedding from the primary laminar separation bubble on the low-Reynolds-number airfoil.  相似文献   

20.
Large-eddy simulations of supersonic nozzle and diffuser flows with circular cross-sections using high-order compact schemes and an explicit filtering version of the approximate deconvolution method are presented in this paper. Two flow cases each for nozzle and diffuser having different outlet to inlet area ratios are presented. The effect of the geometry variations on the Reynolds stresses as well as on the production and pressure-strain terms in their transport equations is demonstrated. A Green’s function analysis of the Poisson equation for pressure fluctuations using LES data is presented and the results show similar trends as found in previous analyses using DNS data. The effects of geometry changes on the rapid and slow parts of pressure-strain correlations is also demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号