首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
High-purity specimens of Li6CaLa2Ta2O12 and Li6BaLa2Ta2O12 have been successfully synthesized by solid-state reactions. The analytical chemical compositions of these samples were in good agreement with the nominal compositions of Li6CaLa2Ta2O12 and Li6BaLa2Ta2O12. The Rietveld refinements verified that these compounds have the garnet-type framework structure with the lattice constants of a = 12.725(2) Å for Li6CaLa2Ta2O12 and a = 13.001(4) Å for Li6BaLa2Ta2O12. All of the diffraction peaks of X-ray powder diffraction patterns were well indexed on the basis of cubic symmetry with space group Ia-3d. To make a search for Li sites, the electron density distributions were precisely examined by using the maximum entropy method. Li+ ions occupy partially two types of crystallographic site in these compounds: (i) tetrahedral 24d sites, and (ii) distorted octahedral 96h sites, the latter of which are the vacant sites of the ideal garnet-type structure. The present Li6CaLa2Ta2O12 and Li6BaLa2Ta2O12 samples exhibit the conductivity σ = 2.2 × 10? 6 S cm? 1 at 27 °C (Ea = 0.50 eV) and σ = 1.3 × 10? 5 S cm? 1 at 25 °C (Ea = 0.44 eV), respectively.  相似文献   

2.
《Solid State Ionics》2006,177(1-2):129-135
LixV2O5 (0.4 < x < 1.4) prepared by solid-state reaction were studied by 7Li and 51V NMR spectroscopy. 7Li NMR spectra showed a narrowing of the line width in relation to Li+ionic diffusion. Analysis of LixV2O5 using a Debye-type relaxation model showed a low activation energy ∼0.07 eV in the sample of x = 0.4 below room temperature, and revealed a Li+ionic diffusion with larger activation energy ∼0.5 eV above 450 K in lithium-rich samples. The latter is ascribed to the existence of a multi-phase system comprising stable ɛ- and γ-phases, resulting from complicated phase transitions at high temperature. These shapes and shifts enable the classification of the β-, ɛ-, δ-, and γ-phases. The ionic diffusion of Li+ ions is discussed in relation to the complicated phase transitions.  相似文献   

3.
4.
Baoan Fan  Xiangli Liu 《Solid State Ionics》2009,180(14-16):973-977
A-deficit La0.54Sr0.44Co0.2Fe0.8O3 ? δ cathode material for intermediate temperature solid oxide fuel cells (IT-SOFCs) was synthesized by a citrate complexation (Pechini) route. Using La0.54Sr0.44Co0.2Fe0.8O3 ? δ as cathode material, a superior cell performance with the maximum power density of 309, 470 and 855 mW cm? 2 at 600, 650 and 700 °C was achieved, in contrast with the maximum power density of 266, 354 and 589 mW cm? 2 using conventional La0.6Sr0.4Co0.2Fe0.8O3 ? δ as cathode material at the same temperatures. The reason of this improvement was analyzed on the basis of defect chemistry. Thermal shrinkage experiment testified that the oxygen vacancies in La0.54Sr0.44Co0.2Fe0.8O3 ? δ are more mobile than in La0.6Sr0.4Co0.2Fe0.8O3 ? δ. Furthermore, theoretical calculation in terms of their composition and the shift of peak position in XRD pattern showed that the concentration of oxygen vacancies of La0.54Sr0.44Co0.2Fe0.8O3 ? δ is higher than that of La0.6Sr0.4Co0.2Fe0.8O3 ? δ. Therefore, the oxygen ion conductivity via vacancies transfer mechanism is enhanced, which induces the polarization resistance of La0.54Sr0.44Co0.2Fe0.8O3 ? δ being decreased with a result of cell performance improved.  相似文献   

5.
The effect of Ta2O5 addition on microstructure, electrical properties, and dielectric characteristics of the quaternary ZnO–V2O5–MnO2 vaistor ceramics was investigated. Analysis of the microstructure indicated that the quaternary ZnO–V2O5–MnO2–Ta2O5 ceramics consisted of mainly ZnO grain and minor secondary phases such as Zn3(VO4)2, ZnV2O4, TaVO5, and Ta2O5. As the amount of Ta2O5 increased, the sintered density increased from 94.8 to 97.2% of the theoretical density (5.78 g/cm3 for ZnO), whereas the average grain size decreased from 7.7 to 6.0 μm. The ceramics added with 0.05 mol% Ta2O5 exhibited the highest breakdown field (2715 V/cm) and the highest nonlinear coefficient (20). However, further increase caused α to abruptly decrease. The Ta2O5 acted as a donor due to the increase of electron concentration in accordance with the amount of Ta2O5. The donor concentration increased from 1.97×1018 to 3.04×1018cm?3 with increasing the amount of Ta2O5 and the barrier height exhibited the maximum value (0.95 eV) at 0.05 mol% Ta2O5.  相似文献   

6.
We have studied the electrical and optical properties of Cu–Al–O films deposited on silicon and quartz substrates by using radio frequency (RF) magnetron sputtering method under varied oxygen partial pressure PO. The results indicate that PO plays a critical role in the final phase constitution and microstructure of the films, and thus affects the electrical resistivity and optical transmittance significantly. The electrical resistivity increases with the increase of PO from 2.4 × 10?4 mbar to 7.5 × 10?4 mbar and afterwards it decreases with further increasing PO up to 1.7 × 10?3 mbar. The optical transmittance in visible region increases with the increase of PO and obtains the maximum of 65% when PO is 1.7 × 10?3 mbar. The corresponding direct band gap is 3.45 eV.  相似文献   

7.
The diffusion coefficients of lithium ions (DLi+) in nano-Si were determined by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic intermittent titration technique (GITT). DLi+ values are estimated to be ~ 10? 12 cm2 s? 1 and exhibit a “W” type varying with the lithium concentration in silicon. Two minimum regions of DLi+ (at Li2.1 ± 0.2Si and Li3.2 ± 0.2Si) are found, which probably result from two amorphous compositions (a-Li7Si3 and a-Li13Si4). Besides the two minimum regions, one maximum DLi+ is observed at Li15Si4, corresponding to the crystallization of highly lithiated amorphous LixSi.  相似文献   

8.
《Solid State Ionics》2006,177(26-32):2363-2368
The mechanism and kinetics of water incorporation in the double perovskites Ва4Ca2Nb2O11 and Sr6Ta2O11 has been investigated (T = 300÷500 °C and aH2O = 1 · 10 3÷2.2 · 10 2). The formation of hydration products Ba4Ca2Nb2O11·xH2O and Sr6Ta2O11·xH2O (0.2 < x < 0.50) was limited by the diffusion of H2O. It has been found that the concentration dependences of H2O are the same for both samples: small increasing of H2O with increasing x. The temperature dependences of the chemical diffusion coefficients of water for compositions of Ba4Ca2Nb2O11·0.35H2O and Sr6Ta2O11·0.35H2O could be described with close activation energies of Ea = 0.38 ± 0.03 eV and Ea = 0.49 ± 0.03 eV, respectively. The chemical diffusion coefficients of water are nearly one order of magnitude smaller for tantalate Sr6Ta2O11. This result correlates with lower oxygen and proton conductivities in Sr6Ta2O11 as the consequence of lower mobilities.  相似文献   

9.
Nonstoichiometric variation of oxygen content in La2 ? xSrxNiO4 + δ (x = 0, 0.1, 0.2, 0.3, 0.4) and decomposition P(O2) were determined by means of high temperature gravimetry and coulometric titration. The measurements were carried out in the temperature range between 873 and 1173 K and the P(O2) range between 10? 20 and 1 bar. La2 ? xSrxNiO4 + δ showed the oxygen excess and the oxygen deficient compositions depending on P(O2), temperature, and the Sr content. The value of partial molar enthalpy of oxygen approaches zero as δ increases in the oxygen excess region, which indicate that the interstitial oxygen formation reaction is suppressed as δ increase. The relationship between δ and logP(O2) were analyzed by two types of defect equilibrium models. One is a localized electron model, and the other is a delocalized electron model. Both models can well explain the oxygen nonstoichiometry of La2 ? xSrxNiO4 + δ with a regular solution approximation.  相似文献   

10.
《Solid State Ionics》2006,177(26-32):2705-2709
Lithium ions of perovskite-type lithium ion conductor La0.55Li0.35TiO3 were replaced by divalent Mg2+, Zn2+, and Mn2+ ions in an ion-exchange reaction using molten chlorides. The polycrystalline Mg-exchanged and Zn-exchanged samples are solid electrolytes for divalent Mg2+ and Zn2+ ions, whose dc ionic conductivities (σ = 2.0 × 10 6 S cm 1 at 558 K for the Mg-exchanged sample, La0.56(2)Li0.02(1)Mg0.16(1)TiO3.01(2) and σ = 1.7 × 10 6 S cm 1 at 708 K for the Zn-exchanged samples, La0.55(1)Li0.0037(2)Zn0.15(1)TiO2.98(2)) were compared to those of the known highest Mg2+ and Zn2+ inorganic solid electrolytes. The Mn-exchanged sample, then, showed paramagnetic behavior in the temperature range of 2 to 300 K. The Mn ions in the exchanged sample are divalent and the spin configuration is in high spin state (S = 5/2).  相似文献   

11.
The cathodic performance of selected mixed-conducting electrodes, including perovskite-type SrMn0.6Nb0.4O3 ? δ, Sr0.7Ce0.3Mn0.9Cr0.1O3 ? δ and Gd0.6Ca0.4Mn0.9Ni0.1O3 ? δ, and Ruddlesden–Popper La2Ni0.5Cu0.5O4 + δ, LaSr2Mn1.6Ni0.4O7 ? δ, La4Ni3 ? xCuxO10 ? δ (x = 0–0.1) and La3.95Sr0.05Ni2CoO10 ? δ, was evaluated in contact with apatite-type La10Si5AlO26.5 solid electrolyte at 873–1073 K and atmospheric oxygen pressure. The electrochemical activity of porous nickelate-based layers was found to correlate with the concentration of mobile ionic charge carriers and bulk oxygen transport, thus lowering in the series La4Ni2.9Cu0.1O10 ? δ > La4Ni3O10 ? δ > La3.95Sr0.05Ni2CoO10 ? δ and decreasing on copper doping in K2NiF4-type La2Ni1 ? xCuxO4 ? δ. The relatively high overpotentials of nickelate-based cathodes, varying in the range ? 240 to ? 370 mV at 1073 K and current density of ? 200 mA/cm2, are primarily associated with surface diffusion of silica from La10Si5AlO26.5, which partially blocks the electrochemical reaction zone. As compared to the intergrowth nickelate materials, the manganite-based electrodes exhibit substantially worse electrochemical properties, in correlation with the level of oxygen-ionic and electronic conduction in Mn-containing phases. The effects of cation interdiffusion between the cell components as a performance-deteriorating factor are briefly discussed.  相似文献   

12.
C. Rohmann  J.B. Metson  H. Idriss 《Surface science》2011,605(17-18):1694-1703
The adsorption of CO on α-Al2O3(0001) was studied using the DFT-GGA computational method and on α-Al2O3 powder experimentally by Infra red spectroscopy. The core and valence level regions of α-Al2O3(0001) single crystal surface were also studied experimentally. Ar ions sputtering of the surface results in a slight but reproducible decrease in the XPS O2p lines in the valence band regions due to preferential removal of surface (and near surface) O atoms. Core level XPS O1s and Al2p further confirmed oxygen depletion with an associated surface stoichiometry close to Al2O2.9. The adsorption energy of CO was computed and found equal to 0.52 eV for θ = 0.25, it decreased to 0.42 eV at θ = 1. The IR frequency of νCO was also computed and in all cases it was blue shifted with respect to gas phase CO. The shift, Δν, decreased with increasing coverage where it was found equal to 56 cm? 1 for θ = 0.25 and decreased to 30 cm? 1 for θ = 1. Structural analyses indicated that the change in the adsorption energy and the associated frequency shift is due to surface relaxation upon adsorption. Experimentally the adsorption of CO gave rise to one main IR peak at 2154 cm? 1 at 0.3 Torr and above. Two far smaller peaks are also seen at lower pressures of 0.03–0.2 Torr at 2189 and 2178 cm? 1. The isosteric heat of adsorption was computed for the IR band at 2154 cm? 1 and was found equal to 0.2 eV which did not change with coverage in the investigated range up to θ = 0.6.  相似文献   

13.
Mixed electron hole and oxide ion conducting perovskite-type oxides, La0.8Sr0.2(Ga0.8Mg0.2)1 ? xCrxO3 ? δ (0  x  1.0), were prepared by solid state reaction. The phase stability and the oxygen permeation properties of the oxides were examined as a function of the content of Cr. La0.8Sr0.2(Ga0.8Mg0.2)1 ? xCrxO3 ? δ has a perovskite related tetragonal phase with x = 0.1 to 0.8. The total electrical conductivity of La0.8Sr0.2(Ga0.8Mg0.2)1 ? xCrxO3 ? δ increases with increasing x. The oxygen permeation flux across the La0.8Sr0.2(Ga0.8Mg0.2)1 ? xCrxO3 ? δ membranes at higher temperatures increases with x up to x = 04. The maximum oxygen permeation flux of 1.6 × 10? 7 mol? 1 cm? 2 at 1100 °C in a oxygen activity gradient of air/10? 2 Pa is observed in La0.8Sr0.2(Ga0.8Mg0.2)0.6Cr0.4O3 ? δ. This perovskite-type oxide is stable under an oxygen partial pressure of 7 × 10? 10 Pa at 1000 °C.  相似文献   

14.
Glasses of the general formula xLi2O·(20?x)CaO·30P2O5·30V2O5·20Fe2O3 with x=0, 5, 10, 15 and 20 mol% were prepared; IR, density, electrical and dielectric properties have been investigated. Lithia-containing glasses revealed more (P2O7)4?, FeO6, V–O? and PO? groups and mostly have lower densities than those of lithia-free ones. The electrical properties showed random behavior by replacing Li2O for CaO, which has been assigned to the change of the glass structure. The results of activation energy and frequency-dependent conductivity indicate that the conduction proceeds via electronic and ionic mechanisms, the former being dominant. The mechanism responsible for the electronic conduction is mostly thermally activated hopping of electrons from Fe(II) ions to neighboring Fe(III) sites and/or from V4+ to V5+. The dielectric constant (ε′) showed values that depend on the structure of glass according to its content of Li2O. The (ε′) values are ranging between 3 and 41 at room temperature for 1 kHz, yet at high temperatures, glass with 20 mol Li2O exhibits values of 110 and 3600 when measurement was carried out in the range 0.1–1 kHz, and at 5 MHz, respectively.  相似文献   

15.
We report a systematic study of the layered lithium nitridocuprates Li3 ? xCuxN with 0.1  x  0.39. The structural data obtained from experimental XRD patterns, Rietveld refinements and unit cell parameters calculation vs x, indicate that copper (I) substitute interlayer lithium ions in the parent nitride Li3N to form the Li3 ? xCuxN compound without any Li vacancy in the Li2N? layer. Electrochemical results report Li insertion into the corresponding layered structures cannot take place in the 1.2/0.02 V voltage range as in the case of lithium into nitridonickelates and nitridocobaltates. However, in the initial charge process of Li3 ? xCuxN at 1.4 V leading to a specific capacity higher than 1000 mA h/g, the oxidation of copper and nitride ions is probably involved inducing a strong structural disordering process. As a consequence a new rechargeable electrochemical system characterized by discharge–charge potential of ≈ 0.3 V/1.2 V appears from the second cycle. Cycling experiments 0.02 V voltage/0.02 V range induce a complete destruction of the layered host lattice and the presence of Cu3N in the charge state suggests a conversion reaction. The capacity recovered in the 1.4/0.02 V range practically stabilizes around 500 mA h/g after 20 cycles.  相似文献   

16.
《Solid State Ionics》2006,177(13-14):1205-1210
A comparative investigation of the much-studied La2NiO4+δ (n = 1) phase and the higher-order Ruddlesden-Popper phases, Lan+1NinO3n+1 (n = 2 and 3), has been undertaken to determine their suitability as cathodes for intermediate-temperature solid-oxide fuel cells. As n is increased, a structural phase transition is observed from tetragonal I4/mmm in the hyperstoichiometric La2NiO4.15 (n = 1) to orthorhombic Fmmm in the oxygen-deficient phases, La3Ni2O6.95 (n = 2) and La4Ni3O9.78 (n = 3). High temperature d.c. electrical conductivity measurements reveal a dramatic increase in overall values from n = 1, 2 to 3 with metallic behavior observed for La4Ni3O9.78. Impedance spectroscopy measurements on symmetrical cells with La0.9Sr0.10Ga0.80Mg0.20O3−δ (LSGM-9182) as the electrolyte show a systematic improvement in the electrode performance from La2NiO4.15 to La4Ni3O9.78 with ∼ 1 Ω cm2 observed at 1073 K for the latter. Long-term thermal stability tests show no impurity formation when La3Ni2O6.95 and La4Ni3O9.78 are heated at 1123 K for 2 weeks in air, in contrast to previously reported data for La2NiO4.15. The relative thermal expansion coefficients of La3Ni2O6.95 and La4Ni3O9.78 were found to be similar at ∼ 13.2 × 10 6 K 1 from 348 K to 1173 K in air compared to 13.8 × 10 6 K 1 for La2NiO4.15. Taken together, these observations suggest favourable use for the n = 2 and 3 phases as cathodes in intermediate-temperature solid-oxide fuel cells when compared to the much-studied La2NiO4+δ (n = 1) phase.  相似文献   

17.
《Solid State Ionics》2006,177(19-25):1673-1676
The nanocrystalline perovskite material Li0.15La0.28TaO3 has been synthesized by alkoxide-free Pechini type sol gel method. 7Li NMR measurements were carried out using a Bruker Avance 300 spectrometer at 116 MHz over the temperature range 150 to 400 K. Longitudinal spin-lattice relaxation times (T1) measured by saturation recovery and longitudinal relaxation times in the rotating frame (T) measured using the pulse sequence (π/2–spin lock τ acquisition) with lock radio-frequency field υ = 62.5 kHz and the T2 relaxation time measured by Hahn echo are presented. The static Hahn-echo spectra show two different lithium sites in this perovskite oxide. Further, the relaxation measurements T1 and T show two different types of lithium cations with fast and slow dynamics.  相似文献   

18.
Composites containing La0.8Sr0.2Cr1 ? xRuxO3 ? δ (LSCrRu) with x = 0–0.25 and Gd0.1Ce0.9O1.95 (GDC) were studied as anodes in solid oxide fuel cells (SOFCs) with La0.9Sr0.1Ga0.8Mg0.2O3 ? δ (LSGM) electrolytes. Electrode polarization resistance RP decreased during initial SOFC operation before reaching a minimum. The decrease was more rapid, and the ultimate RP value reached was generally lower, with increasing temperature and Ru content x. RP was stable at longer times except for x = 0.25 where it increased slightly. SOFCs with x = 0.18 anodes at 800 °C yielded power densities as high as 0.53 W/cm2 with an RP value, including the (La,Sr)(Co,Fe)O3–GDC cathode, of < 0.15 Ω cm2. Transmission electron microscopy revealed Ru nano-particles on LSCrRu surfaces; their size increased and their density decreased with increasing temperature. Increasing the Ru content increased the density of Ru surface particles at a given time and temperature. Measured early-stage Ru surface coverage values were consistent with a model where Ru supply to the LSCrRu surface was limited by Ru bulk out-diffusion, but the coverage saturated at longer times. There was surprisingly little Ru particle coarsening over times up to 1000 h at 800 °C, with Ru particles sizes remaining < 10 nm. The cell RP values generally decreased with increasing Ru nano-particle surface area.  相似文献   

19.
The oxygen tracer diffusion coefficient (D?) has been measured for 9 mol% scandia 2 mol% yttria co-doped zirconia solid solution, (Y2O3)2(Sc2O3)9(ZrO2)89, using isotopic exchange and line scanning by Secondary Ion Mass Spectrometry, as a function of temperature. The values of the tracer diffusion coefficient are in the range of 10? 8–10? 7 cm2 s? 1 and the Arrhenius activation energy was calculated to be 0.9 eV; both valid in the temperature range of 600–900 °C. Electrical conductivity measurements were carried out using 2-probe and 4-probe AC impedance spectroscopy, and a 4-point DC method at various temperatures. There is a good agreement between the measured tracer diffusion coefficients (D?, Ea = 0.9 eV) and the diffusion coefficients calculated from the DC total conductivity data (Dσ, Ea = 1.0 eV), the latter calculated using the Nernst–Einstein relationship.  相似文献   

20.
Neutron powder diffraction experiments were carried out to investigate a change in a crystal structure of La0.8Sr0.2Ga0.65Fe0.35O3 for oxygen partial pressures, PO2, at 800 °C. The crystal structure was refined on the basis of the R3?c symmetry for the PO2 range from 10? 1 to 10? 20 atm, by the Rietveld analysis. It was found that lattice parameters, a and c, monotonically expand with decreasing PO2, and then both expansions are rapidly suppressed below 10? 4 atm. In the meantime, lM–O and lO–O(2) also discontinuously increased with decreasing PO2, while lO–O(1) did not change at all PO2, where lM–O, lO–O(1) and lO–O(2) are the bond lengths within a MO6 octahedron (M = Ga0.65Fe0.35). This result indicates that the lM–O and the lO–O(2) are more important than the lO–O(1) for such a complicated lattice expansion for PO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号