首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we present the first observation of the domain structure of Nd–Fe–B magnets with the type-I magnetic contrast in a scanning electron microscope (SEM). The applied method was supported with digital image recording, enhancement and analysis. Observations were made at the surfaces perpendicular to the alignment axis. The domain pattern is revealed in the form of undulated stripes magnetized alternately in the two directions along the alignment axis. However, because of insufficient spatial resolution of the SEM type-I magnetic contrast we could not observe reverse spike domains of about 0.5 μm in diameter, the presence of which was proved by Bitter pattern technique and magnetic force microscopy (MFM). The smallest resolvable domain was 0.8 μm in width, being the best result so far obtained with the type-I magnetic contrast method. Some aspects related to the domain observation with the method applied are discussed in more detail. It is anticipated that the spatial resolution of the method can be improved to 0.2–0.3 μm by employing SEMs with high-brightness electron guns.  相似文献   

2.
The magnetic domain structure of a cobalt monocrystal is observed by means of a scanning electron microscope (SEM). It is revealed by the so-called type-I magnetic contrast [1]. The dependence of the magnetic domain structure on temperature up to about 700 K is investigated and discussed. Digital image processing (image restoration, enhancement and analysis) is used on the images obtained directly from the SEM. The main reasons for the application of digital image processing are: poor resolution of type-I magnetic contrast due to the diffuseness of the leakage magnetic fields above the specimen surface, and the complex character of the magnetic domain structure. Statistical distributions of magnetic domain width are also calculated and presented.  相似文献   

3.
The magnetic domain structure of cobalt monocrystal is observed by means of a scanning electron microscope (SEM). It is revealed by the so-called type-I magnetic contrast [1]. The dependence of magnetic domain width on the specimen is thickness is investigated and discussed. Digital image processing (image restoration, enhancement and analysis) is used on the images obtained directly from the SEM. The main reasons for the application of digital image processing are: poor resolution of type-I magnetic contrast due to the diffuseness of the leakage magnetic fields above the specimen surface, and complex character of magnetic domains. The resolution limit of type-I magnetic contrast in cobalt monocrystal is evaluated. Statistical distributions of magnetic domain width are also calculated and presented.  相似文献   

4.
Bit patterned media (BPM) which utilize each magnetic nanostructured dot as one recorded bit has attracted much interest as a promising candidate for future high-density magnetic recording. In this study, the magnetization reversal behaviors of nanostructured L10-FePt, Co/Pt multilayer (ML), and CoPt/Ru dots are investigated. For Co/Pt and CoPt/Ru nanodots, the bi-stable state is maintained in a very wide size range up to several hundred nm, and the magnetization reversal is dominated by the nucleation of a small reversed nucleus with the dimension of domain wall width. On the other hand, the critical size for the bi-stability of L10-FePt is about 60 nm, and its magnetization reversal proceeds via domain wall displacement even for such a small dot size. These reversal behaviors, depending on the magnetic materials, might be attributed to the difference in structural inhomogeneity, such as defects. In addition to the magnetic properties, the structural uniformity of the material could be crucial for the BPM application.  相似文献   

5.
Actinide materials demonstrate a wide variety of interesting physical properties in both bulk and nanoscale form. To better understand these materials, a broad array of microscopy techniques have been employed, including transmission electron microscopy (TEM), electron energy-loss spectroscopy (EELS), energy dispersive X-ray spectroscopy (EDXS), high-angle annular dark-field imaging (HAADF), scanning electron microscopy (SEM), wavelength dispersive X-ray spectroscopy (WDXS), electron back scattered diffraction (EBSD), scanning tunneling microscopy (STM), atomic force microscopy (AFM), and scanning transmission X-ray microscopy (STXM). Here these techniques will be reviewed, highlighting advances made in the physics, materials science, chemistry, and biology of actinide materials through microscopy. Construction of a spin-polarized TEM will be discussed, considering its potential for examining the nanoscale magnetic structure of actinides as well as broader materials and devices, such as those for computational magnetic memory.  相似文献   

6.
The beam deceleration (BD) method for scanning electron microscopes (SEM) also referred to as "retarding" was applied to back-scattered electron (BSE) imaging of the flat block face of a resin embedded biological specimen under low accelerating voltage and low beam current conditions. BSE imaging was performed with 0-4 kV of BD on en bloc stained rat hepatocyte. BD drastically enhanced the compositional contrast of the specimen and also improved the resolution at low landing energy levels (1.5-3 keV) and a low beam current (10 pA). These effects also functioned in long working distance observation, however, stage tilting caused uncorrectable astigmatism in BD observation. Stage tilting is mechanically required for a FIB/SEM, so we designed a novel specimen holder to minimize the unfavorable tilting effect. The FIB/SEM 3D reconstruction using the new holder showed a reasonable contrast and resolution high enough to analyze individual cell organelles and also the mitochondrial cristae structures (~5 nm) of the hepatocyte. These results indicate the advantages of BD for block face imaging of biological materials such as cells and tissues under low-voltage and low beam current conditions.  相似文献   

7.
This paper introduces CPP-GMR technology, its features, routes to output enhancement, problems to be solved and possibilities as a recording head. For instance, use of high spin-dependent bulk scattering, high resistivity, or half-metallic magnetic materials for free and reference magnetic layers were shown as ways to improve the output of CPP-GMR. A current state of CPP-GMR head development was also mentioned in view points of sensor downsizing, magnetic head noise and high-density recording demonstration. CPP-GMR still has some points to be improved, however it is believed that the CPP-GMR will actualize a next high-performance magnetic read head in no distant future.  相似文献   

8.
王成杰  石发展  王鹏飞  段昌奎  杜江峰 《物理学报》2018,67(13):130701-130701
纳米级分辨率的磁场测量和成像是磁学中的一种重要研究手段.金刚石中的单个氮-空位点缺陷电子自旋作为一种量子传感器,具有灵敏度高、原子级别尺寸、可工作在室温等诸多优势,灵敏度可以达到单核自旋级别,空间分辨率达到亚纳米.将这种磁测量技术与扫描成像技术结合,能够实现高灵敏度和高分辨率的磁场成像,定量地重构出杂散场.这种新型的磁成像技术可以给出磁学中多种重要的研究对象如磁畴壁、反铁磁序、磁性斯格明子的结构信息.随着技术的发展,基于氮-空位点缺陷的磁成像技术有望成为磁性材料研究的重要手段.  相似文献   

9.
刘育良  陈志刚  孙大兴  张广玉 《物理学报》2015,64(23):237502-237502
磁存储密度的持续增长会导致磁头-磁盘的间距不断减小, 这样, 极有可能引起磁头-磁盘接触退磁的发生, 从而造成磁记录层存储数据的丢失. 为了明确退磁过程中的相应作用关系, 本文通过磁力显微镜的相位成像原理直接给出了磁盘退磁的定量测量方法. 并且依据此方法, 利用纳米划痕实验研究了磁头-磁盘接触作用力对磁记录层信息强度的影响规律. 结果表明:当磁头-磁盘接触作用力超过临界退磁载荷时, 磁记录层的信息强度与磁头-磁盘接触作用力之间存在减函数关系; 在低接触载荷区域中, 即使磁记录层表面没有划痕产生, 磁盘退磁现象仍旧可能发生; 对于任意磁头-磁盘接触作用力, 磁盘表面的破坏区域总是会大于磁记录层的退磁区域; 当磁头反复划刮磁盘的同一位置时, 磁记录层的表面划痕处将出现弹性安定状态, 对应地, 磁记录层的信息强度会趋近于某一定值.  相似文献   

10.
Off-axis electron holography of hetero-interfaces   总被引:1,自引:0,他引:1  
Off-axis electron holography is one of the new emerging methods for high spatial resolution characterization of interfaces in materials. It enables recording and retrieval of both amplitude and phase of an electron wavefunction scattered by a specimen. Phase changes introduced by magnetic and electrostatic fields have been studied in the first applications of electron holography to domain walls in ferromagnetic and ferroelectric materials and to p-n junctions. Planar defects in single crystals, such as stacking faults, have been observed with strong phase contrast due to dynamical diffraction.Applications to heterogeneous interfaces have only started. High phase contrast due to mean inner potential differences is found for interfaces between high and low atomic number materials. Dynamical contributions to the phase of the transmitted beam are important for epitaxial interfaces in strongly diffracting orientations. Numerical hologram reconstructions yield quantitative amplitude and phase images of an interface which are energy filtered and are in perfect registry. Both are function of specimen thickness. The thickness dependence can be eliminated by division of the phase image with a logarithm of the amplitude image. This ratio maps the product of the mean inner potential and the mean free path for inelastic scattering across a hetero-interface in weekly diffracting orientations.Resolution enhancement through aberration correction has not been demonstrated for interfaces as yet. Holography of interfaces in plan view is unexplored.  相似文献   

11.
An electrical signal anomaly is an undesired signal and is difficult to detect by a commercial instrument due to its short duration and unpredictable fault on a signal. Since a GMR recording head is a stack of nanometer thick multilayers, in particular, a magnetic layer and conductor layers, for magnetic insulating spacers, it is very sensitive to electron movements. Visible damage is understandable and protectable but latent failure cannot be measured. It is possibly observed by using frequency-domain apparatus but certainly it is not real-time detection. Therefore, in order to detect a latent failure head affected by ESD in the time domain, current conventional instruments are ineffective. In this study, the wavelet transform technique using the 4th order Daubechies is proposed to detect the glitches on a magnetic recording head signal in the time domain. It is found that the glitches occur when the ESD level of the charged device model (CDM) and human body model (HBM) on giant magnetoresistive (GMR) heads are in ranges of 6–15 V and 40–120 V, respectively. The electrical test parameters and scanning electron microscope (SEM) photo of the recording heads show no visible change in reader sensor. To ensure the results, the GMR damage is observed by SEM when the CDM-ESD and HBM-ESD are 10 V and 130 V, respectively. The glitches in the magnetic response signal of the GMR head are found to increase when the ESD level is increased. Thus, the Daubechies wavelet transform technique can be a novel approach to detect the pre-degradation of a GMR head due to an ESD effect.  相似文献   

12.
《Current Applied Physics》2018,18(11):1174-1181
In nanomagnetism, one of the crucial scientific questions is whether magnetic behaviors are deterministic or stochastic on a nanoscale. Apart from the exciting physical issue, this question is also of paramount highest relevance for using magnetic materials in a wealth of technological applications such as magnetic storage and sensor devices. In the past, the research on the stochasticity of a magnetic process has been mainly done by macroscopic measurements, which only offer ensemble-averaged information. To give more accurate answer for the question and to fully understand related underlying physics, the direct observation of statistical behaviors in magnetic structures and magnetic phenomena utilizing advanced characterization techniques is highly required. One of the ideal tools for such study is a full-field soft X-ray microscope since it enables imaging of magnetic structures on the large field of view within a few seconds. Here we review the stochastic behaviors of various magnetic processes including magnetization reversal process in thin films, magnetic domain wall motions in nanowires, and magnetic vortex formations in nanodisks studied by full-field soft X-ray microscopy. The origin triggering the stochastic nature witnessed in each magnetic process and the way to control the intrinsic nature are also discussed.  相似文献   

13.
We investigate the competing effects of interlayer exchange coupling and magnetostatic coupling in the magnetic heterostructure ([Co/Pt]/NiO/[Co/Pt]) with perpendicular magnetic anisotropy (PMA). This particular heterostructure is unique among coupled materials with PMA in directly exhibiting both ferromagnetic and antiferromagnetic coupling, oscillating between the two as a function of spacer layer thickness. By systematically tuning the coupling interactions via a wedge-shaped NiO spacer layer, we explore the energetics that dictate magnetic domain formation using high resolution magnetic force microscopy coupled with the magneto-optical Kerr effect. This technique probes the microscopic and macroscopic magnetic behavior as a continuous function of thickness and the interlayer exchange coupling, including the regions where interlayer coupling goes through zero. We see significant changes in domain structure based on the sign of coupling, and also show that magnetic domain size is directly related to the magnitude of the interlayer exchange coupling energy, which generally dominates over the magnetostatic interactions. When magnetostatic interactions become comparable to the interlayer exchange coupling, a delicate interplay between the differing energy contributions is apparent and energy scales are extracted. The results are of intense interest to the magnetic recording industry and also illustrate a relatively new avenue of undiscovered physics, primarily dealing with the delicate balance of energies in the formation of magnetic domains for coupled systems with PMA, defining limits on domain size as well as the interplay between roughness, domains and magnetic coupling.  相似文献   

14.
The aftereffect of Co/Pt multilayer films with perpendicular magnetization has been measured with a magneto-optical Kerr effect (MOKE) magnetometer and calculated with a newly developed Preisach model. Compared to materials such as traditional magnetic recording media, Co/Pt multilayer films show a more complete picture of the progression of aftereffect because the magnetization of this material decays from saturation almost all the way to a ground state in a reasonable length of time. The magnetization measurements for times equal to negative and positive infinity are asymptotically horizontal, with a transition region that is linear on a logarithmic time scale. In contrast, typical published aftereffect analyses exhibit only a very small percentage of the total aftereffect that could be observed if time were not a factor in making measurements. A Preisach–Arrhenius model is used to calculate the magnetic aftereffect in the Co/Pt multilayer. Comparisons of the model to experimental results show not only the validity of the model, but also its value in predicting very short-time and long-time aftereffect behavior, and low levels of aftereffect occurring in noisy data, all of which are difficult to observe experimentally.  相似文献   

15.
Here we introduce a novel neutron imaging method, which is based on the effect that the spatial coherence of the neutron wave front can be changed through small-angle scattering of neutrons at magnetic domain walls in the specimen. We show that the technique can be used to visualize internal bulk magnetic domain structures that are difficult to access by other techniques. The method is transferable to a wide variety of specimens, extendable to three dimensions, and well suited for investigating materials under the influence of external parameters, as, e.g., external magnetic field, temperature, or pressure.  相似文献   

16.
The magnetic domain structure in oriented Tb0.3Dy0.7Fe1.92 (Terfenol-D) is investigated by scanning electron acoustic microscopy (SEAM) in a wide frequency range from 75 to 530 kHz. Both secondary electron image and electron acoustic image can be obtained in situ simultaneously. By changing the modulation frequencies, the SEAM can be used as an effective nondestructive method to observe not only the surface topography and domain structure but also the subsurface domain structure and defects. The magnetic domain structure is verified by magnetic force microscopy (MFM). Furthermore, magnetic domains can be observed in both linear and nonlinear imaging modes by SEAM. The contributions to the image contrast are related to the signal generation through the piezomagnetic coupling mechanism, magnetostrictive coupling mechanism, and thermal-wave coupling mechanism.  相似文献   

17.
This paper reviews the theory and practice of Lorentz electron microscopy in the investigations of magnetic domain structure. The transmission electron microscope, the necessary operational procedures and imaging theory required for Lorentz microscopy are described. Magnetization devices and other facilities that have been developed over the last two years to study domain magnetization in situ in the electron microscope are discussed. Results so far obtained on such materials as thin single crystals and polycrystals of ferromagnetic metals, magnetic oxides, evaporated and electrodeposited single crystal and polycrystal films, and whisker and single domain particles are reviewed. The methods available for preparing specimens in a suitable form for transmission electron microscopy are described.  相似文献   

18.
Self-consistent iterative simulation of the magnetic recording channel has been established as a powerful tool for the workers in this field. Though many papers have been published, even the one-dimensional model - which is especially suited for thin metallic films - can be improved or supplemented. The model presented here contains a new method of considering head sensitivities without transformation into the frequency domain and a detailed impulse analysis. With slight modifications it can be used for anisotropic materials.  相似文献   

19.
We give an overview over our recent efforts of high-resolution magnetic imaging using scanning tunneling microscopy with a ferromagnetic tip. Magnetic sensitivity is obtained on the basis of local tunneling magnetoresistance between a soft magnetic tip and the sample. The magnetisation of the tip is switched periodically with a small coil, leading to variations of the tunneling current due to the tunneling magnetoresistance effect. These variations are detected with a lock-in amplifier to separate spin-dependent parts from the topographic parts of the tunneling current such that the topography and the magnetic structure of the sample can be recorded simultaneously. Crucial for this method is to avoid mechanical vibrations of the tip, that may also lead to variations in the tunneling current. Exemplary studies of polycrystalline Ni and the closure domain pattern of Co(0001) are presented, showing high contrast at acquisition times as low as 3 ms/pixel and a lateral resolution of the order of 1 nm. Further it is demonstrated that besides topography and magnetisation, also local information about the magnetic susceptibility can be obtained. Received: 28 April 2000 / Accepted: 15 May 2000 / Published online: 7 March 2001  相似文献   

20.
High magnetic field is one of the effective tools to control a chemical reaction and materials synthesis. In this review,we summarized the magnetic field effects on chemical reactions, such as reaction pathway, growth behavior of nanomaterials, product phase, and magnetic domain of materials. The surface spins and activity of catalysts under magnetic fields were also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号