首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A dislocation density based constitutive model for the face centered cubic crystal structure has been implemented into a crystal-plasticity finite element framework and extended to consider the mechanical interaction between mobile dislocations and grain boundaries by the authors [Ma, A., Roters, F., Raabe, D., 2006a. A dislocation density based constitutive model for crystal-plasticity FEM including geometrically necessary dislocations. Acta Materialia 54, 2169–2179; Ma, A., Roters, F., Raabe, D., 2006b. On the consideration of interactions between dislocations and grain boundaries in crystal-plasticity finite element modeling – theory, experiments, and simulations. Acta Materialia 54, 2181–2194]. The approach to model the grain boundary resistance against slip is based on the introduction of an additional activation energy into the rate equation for mobile dislocations in the vicinity of internal interfaces. This energy barrier is derived from the assumption of thermally activated dislocation penetration events through grain boundaries. The model takes full account of the geometry of the grain boundaries and of the Schmid factors of the critically stressed incoming and outgoing slip systems. In this study we focus on the influence of the one remaining model parameter which can be used to scale the obstacle strength of the grain boundary.  相似文献   

2.
Propagation of periodic waves in the vicinity of irregular saw-tooth shaped boundary in finite difference models is investigated. The reflection of an incoming wave from a single saw-tooth boundary is found to be accompanied by a phase shift. It is shown that any wave mode propagating along such a boundary is trapped and decays in the direction normal to the boundary. A wave propagating along a channel with saw-tooth shaped lateral boundaries is influenced by the trapped waves, which leads to a reduction of the phase velocity. Phase velocities obtained from the present normal mode analysis are compared to velocities in numerical experiments. The agreement is excellent.  相似文献   

3.
Ferroelectric materials offer a variety of new applications in the field of smart structures and intelligent systems. Accordingly, the modelling of these materials constitutes an active field of research. A critical limitation of the performance of such materials is given when electrical, mechanical, or mixed loading fatigue occurs, combined with, for instance, microcracking phenomena. In this contribution, fatigue effects in ferroelectric materials are numerically investigated by utilisation of a cohesive-type approach. In view of finite element-based simulations, the geometry of a natural grain structure, as observed on the so-called meso-level, is represented by an appropriate mesh. While the response of the grains themselves is approximated by coupled continuum elements, grain boundaries are numerically incorporated via so-called cohesive-type or interface elements. These offer a great potential for numerical simulations: as an advantage, they do not result in bad-conditioned systems of equations as compared with the application of standard continuum elements inhering a very high ratio of length and height. The grain boundary behaviour is modelled by cohesive-type constitutive laws, designed to capture fatigue phenomena. Being a first attempt, switching effects are planned to be added to the grain model in the future. Two differently motivated fatigue evolution techniques are applied, the first being appropriate for low-cycle-fatigue, and a second one adequate to simulate high-cycle-fatigue. Subsequent to a demonstration of the theoretical and numerical framework, studies of benchmark boundary value problems with fatigue-motivated boundary conditions are presented.  相似文献   

4.
In this work, the effect of the material microstructural interface between two materials (i.e., grain boundary in polycrystalls) is adopted into a thermodynamic-based higher order strain gradient plasticity framework. The developed grain boundary flow rule accounts for the energy storage at the grain boundary due to the dislocation pile up as well as energy dissipation caused by the dislocation transfer through the grain boundary. The theory is developed based on the decomposition of the thermodynamic conjugate forces into energetic and dissipative counterparts which provides the constitutive equations to have both energetic and dissipative gradient length scales for the grain and grain boundary. The numerical solution for the proposed framework is also presented here within the finite element context. The material parameters of the gradient framework are also calibrated using an extensive set of micro-scale experimental measurements of thin metal films over a wide range of size and temperature of the samples.  相似文献   

5.
This work is an attempt to answer the question:
Is there a physically natural method of characterizing the possible interactions between the slip systems of two grains that meet at a grain boundary—a method that could form the basis for the formulation of grain-boundary conditions?
Here we give a positive answer to this question based on the notion of a Burgers vector as described by a tensor field G on the grain boundary [Gurtin, M.E., Needleman, A., 2005. Boundary conditions in small-deformation single-crystal plasticity that account for the Burgers vector. J. Mech. Phys. Solids 53, 1-31]. We show that the magnitude of G can be expressed in terms of two types of moduli: inter-grain moduli that characterize slip-system interactions between the two grains; intra-grain moduli that for each grain characterize interactions between any two slip systems of that grain.We base the theory on microscopic force balances derived using the principle of virtual power, a version of the second law in the form of a free-energy imbalance, and thermodynamically compatible constitutive relations dependent on G and its rate. The resulting microscopic force balances represent flow rules for the grain boundary; and what is most important, these flow rules account automatically—via the intra- and inter-grain moduli—for the relative misorientation of the grains and the orientation of the grain boundary relative to those grains.  相似文献   

6.
Non-equilibrium molecular dynamics (MD) method was performed to simulate the thermal transportation process in graphene nanoribbons (GNRs). A convenient way was conceived to introduce tilt grain boundaries (GBs) into the graphene lattice by repetitive removing C atom rows along certain directions. Comprehensive MD simulations reveal that larger-angle GBs are effective thermal barriers and substantially reduce the average thermal conductivity of GNRs. The GB thermal conductivity is ~10 W·m 1 ·K 1 for a bicrystal GNR with a misorientation of 21.8, which is ~97% less than that of a prefect GNR with the same size. The total thermal resistance has a monotonic dependence on the density of the 5-7 defects along the GBs. A theoretical model is proposed to capture this relation and resolve the contributions by both the reduction in the phonon mean free path and the defect-induced thermal resistance.  相似文献   

7.
In order to understand the initiation behavior of microstructurally small cracks in a stress corrosion cracking condition, it is important to know the tensile normal stress acting on the grain boundary (normal GB stress). The local stress in a polycrystalline body is enhanced by the inhomogeneity which stems from the shape and orientation of each grain. The stress in a three-dimensional polycrystalline body consisting of 100 grains with random orientation, under a remote uniform tensile stress condition, is evaluated by the finite element method. It was revealed that the local stress on the polycrystalline body is inhomogeneous under uniform applied stress and becomes large at those grain boundaries that are perpendicular to the load axis, though there is large fluctuation. It was also shown that the normal GB stress tends to be large near the triple points due to the deformation constraint caused by adjacent grains. Finally, the maximum stress on the surface of a large component caused by the inhomogeneity was evaluated by using Gumbel statistics.  相似文献   

8.
This contribution focuses on the development of constitutive models for the grain boundary region between two crystals, relying on the dislocation based polycrystalline model documented in (Evers, L.P., Parks, D.M., Brekelmans, W.A.M., Geers, M.G.D., 2002. Crystal plasticity model with enhanced hardening by geometrically necessary dislocation accumulation. J. Mech. Phys. Solids 50, 2403–2424; Evers, L.P., Brekelmans, W.A.M., Geers, M.G.D., 2004a. Non-local crystal plasticity model with intrinsic SSD and GND effects. J. Mech. Phys. Solids 52, 2379–2401; Evers, L.P., Brekelmans, W.A.M., Geers, M.G.D., 2004b. Scale dependent crystal plasticity framework with dislocation density and grain boundary effects. Int. J. Solids Struct. 41, 5209–5230). The grain boundary is first viewed as a geometrical surface endowed with its own fields, which are treated here as distributions from a mathematical point of view. Regular and singular dislocation tensors are introduced, defining the grain equilibrium, both in the grain core and at the boundary of both grains. Balance equations for the grain core and grain boundary are derived, that involve the dislocation density distribution tensor, in both its regular and singular contributions. The driving force for the motion of the geometrically necessary dislocations is identified from the pull-back to the lattice configuration of the quasi-static balance of momentum, that reveals the duality between the stress and the curl of the elastic gradient. Criteria that govern the flow of mobile geometrically necessary dislocations (GNDs) through the grain boundary are next elaborated on these bases. Specifically, the sign of the projection of a lattice microtraction on the glide velocity defines a necessary condition for the transmission of incoming GNDs, thereby rendering the set of active slip systems for the glide of outgoing dislocations. Viewing the grain boundary as adjacent bands in each grain with a constant GND density in each, the driving force for the grain boundary slip is further expressed in terms of the GND densities and the differently oriented slip systems in each grain. A semi-analytical solution is developed in the case of symmetrical slip in a bicrystal under plane strain conditions. It is shown that the transmission of plastic slip occurs when the angle made by the slip direction relative to the grain boundary normal is less than a critical value, depending on the ratio of the GND densities and the orientation of the transmitted dislocations.  相似文献   

9.
The parameters for a crystal plasticity finite element constitutive law were calibrated for the aluminum–lithium alloy 2198 using micro-column compression testing on single crystalline volumes. The calibrated material model was applied to simulations of micro-cantilever deflection tests designed for micro-fracture experiments on single grain boundaries. It was shown that the load–displacement response and the local deformation of the grains, which was measured by digital image correlation, were predicted by the simulations. The fracture properties of individual grain boundaries were then determined in terms of a traction–separation-law associated with a cohesive zone. This combination of experiments and crystal plasticity finite element simulations allows the investigation of the fracture behavior of individual grain boundaries in plastically deforming metals.  相似文献   

10.
In the concurrent multiscale analysis, it is difficult to have truly seamless transition between the atomistic and continuum scale. This situation is even worse when defects pass through the boundary between different scales. For example, there is a lack of effective methods to handle the dislocation passing through scale boundaries which is important to investigate plasticity at the nanoscale. In this paper, the generalized particle (GP) method proposed by the first author is further developed so that a seamless transition and dislocation passing between different scales can be realized. Specifically, the linkage between different scales is through material neighbor-link cells (NLC) with scale duality. This indicates that material elements can be high-scale particles through a lumping process and can also be atoms via decomposition depending on the needs of the simulation. At the interface, the information transfer from bottom scale-up or from top scale-down is through the particles or atoms in the NLC. They are with the same material structure, all possess nonlocal constitutive behavior; thus, the smooth transition at the interface between different scales can be attained and validated to avoid non-physical responses. To save degrees of freedom, atoms are lumped together into a generalized particle in the domain in which the deformation gradient is near homogeneous. On the other hand, when defects such as dislocations in the atomistic domain are near the particle domain, the particles along dislocation propagation path and its surrounding region will be decomposed into atoms so dislocations can freely pass through the scale boundary and propagate inside the model just as it propagates in the deformed atomistic crystal structure. The method is verified first for seamless transition of variables at the scale boundary by a one-dimensional model and then verified for dislocation nucleation and propagation passing through scale boundaries in two cases, one is near the free surface and the other is inside of the copper nanowire. All the validations are through comparisons with fully atomistic analyses under same conditions. The comparison is satisfactory.  相似文献   

11.
The nonuniform propagation of a cleavage front across a field of persistent grain boundaries is analyzed. When a cleavage crack advances in a field of grains, some of the grain boundaries cannot be directly broken through, which interrupts the crack growth process. When the crack front bypasses such persistent grain boundaries (PGB), the overall crack growth driving force must be increased so that the local stress intensity can overcome the local fracture resistance. A theoretical model is developed based on the R-curve analysis. A closed-form expression of the critical stress intensity factor is given as a function of the line content of PGB.  相似文献   

12.
13.
14.
In this paper, we construct a model for prediction of fatigue crack initiation based on the material’s microstructure. In order to do so, the energy of a persistent slip band (PSB) is monitored and an energy balance approach is taken, in which cracks initiate and the material fails due to stress concentration from a PSB (with respect to dislocation motion). These PSBs are able to traverse low-angle grain boundaries (GB), thus belonging to clusters of grains. As a consequence of the ongoing cyclic slip process, the PSBs evolve and interact with high-angle GBs, the result of which leads to dislocation pile-ups, static extrusions in the form of ledges/steps at the GB, stress concentration, and ultimately crack initiation. Hence, this fatigue model is driven by the microstructure, i.e. grain orientations, widely distributed grain sizes, precipitates, PSB-GB interactions, as well as the affect of neighboring grains. The results predict that cracks initiate near twin boundaries from PSBs spanning a single large grain with a favorable orientation or multiple grains connected by low-angle GBs. Excellent agreement is shown between model predictions and experimental data.  相似文献   

15.
A multiple time step algorithm, called reversible reference system propagator algorithm, is introduced for the long time molecular dynamics simulation. In contrast to the conventional algorithms, the multiple time method has better convergence, stability and efficiency. The method is validated by simulating free relaxation and the hypervelocity impact of nano-clusters. The time efficiency of the multiple time step method enables us to investigate the long time interaction between lattice dislocations and low-angle grain boundaries.The project supported by the National Natural Science Foundation of China (the 973 Project 2004CB619304).  相似文献   

16.
The mechanical response of engineering materials evaluated through continuum fracture mechanics typically assumes that a crack or void initially exists, but it does not provide information about the nucleation of such flaws in an otherwise flawless microstructure. How such flaws originate, particularly at grain (or phase) boundaries is less clear. Experimentally, “good” vs. “bad” grain boundaries are often invoked as the reasons for critical damage nucleation, but without any quantification. The state of knowledge about deformation at or near grain boundaries, including slip transfer and heterogeneous deformation, is reviewed to show that little work has been done to examine how slip interactions can lead to damage nucleation. A fracture initiation parameter developed recently for a low ductility model material with limited slip systems provides a new definition of grain boundary character based upon operating slip and twin systems (rather than an interfacial energy based definition). This provides a way to predict damage nucleation density on a physical and local (rather than a statistical) basis. The parameter assesses the way that highly activated twin systems are aligned with principal stresses and slip system Burgers vectors. A crystal plasticity-finite element method (CP-FEM) based model of an extensively characterized microstructural region has been used to determine if the stress–strain history provides any additional insights about the relationship between shear and damage nucleation. This analysis shows that a combination of a CP-FEM model augmented with the fracture initiation parameter shows promise for becoming a predictive tool for identifying damage-prone boundaries.  相似文献   

17.
The grain size dependence of the flow strength of polycrystals is analyzed using plane strain, discrete dislocation plasticity. Dislocations are modeled as line singularities in a linear elastic solid and plasticity occurs through the collective motion of large numbers of dislocations. Constitutive rules are used to model lattice resistance to dislocation motion, as well as dislocation nucleation, dislocation annihilation and the interaction with obstacles. The materials analyzed consist of micron scale grains having either one or three slip systems and two types of grain arrangements: either a checker-board pattern or randomly dispersed with a specified volume fraction. Calculations are carried out for materials with either a high density of dislocation sources or a low density of dislocation sources. In all cases, the grain boundaries are taken to be impenetrable to dislocations. A Hall–Petch type relation is predicted with Hall–Petch exponents ranging from ≈0.3 to ≈1.6 depending on the number of slip systems, the grain arrangement, the dislocation source density and the range of grain sizes to which a Hall–Petch expression is fit. The grain size dependence of the flow strength is obtained even when no slip incompatibility exists between grains suggesting that slip blocking/transmission governs the Hall–Petch effect in the simulations.  相似文献   

18.
We perform atomistic simulations of dislocation nucleation in defect free crystals in 2 and 3 dimensions during indentation with circular (2D) or spherical (3D) indenters. The kinematic structure of the theory of Field Dislocation Mechanics (FDM) is shown to allow the identification of a local feature of the atomistic velocity field in these simulations as indicative of dislocation nucleation. It predicts the precise location of the incipient spatially distributed dislocation field, as shown for the cases of the Embedded Atom Method potential for Al and the Lennard–Jones pair potential. We demonstrate the accuracy of this analysis for two crystallographic orientations in 2D and one in 3D. Apart from the accuracy in predicting the location of dislocation nucleation, the FDM based analysis also demonstrates superior performance than existing nucleation criteria in not persisting in time beyond the nucleation event, as well as differentiating between phase boundary/shear band and dislocation nucleation. Our analysis is meant to facilitate the modeling of dislocation nucleation in coarser-than-atomistic scale models of the mechanics of materials.  相似文献   

19.
20.
Xu Wang 《力学快报》2011,1(2):021005
We investigate the elastic field induced by an edge dislocation in a multilayered laminated composite composed of (N ? 2) thin bonded elastic layers sandwiched between two semi-infinite elastic media. A simple closed-form solution is obtained when all the phases have equal shear modulus but different Poisson's ratios, and when the dislocation is located in the upper semi-infinite phase. The image force acting on the dislocation due to its interaction with the multilayered structure is also derived. Several specific examples are discussed in detail to illustrate the mobility of the edge dislocation. Some interesting behaviors of the dislocation are observed. Our results indicate that it is possible to find at most (N ? 2) equilibrium positions for the edge dislocation in an N-phase composite structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号