首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study describes the use of a solution of a phosphonium protic ionic liquid [Bu3HP][BF4] (3.4 mol L−1) in acetonitrile as an electrolyte for carbon-based supercapacitors, with an operating voltage of 1.5 V and capacities comparable to conventional aqueous electrolytes. The combination of good cycling abilities and an operating temperature ranging from − 40 °C to 80 °C rendered possible the realization of supercapacitors having an extended specific energy in a large temperature range.  相似文献   

2.
The graphene anode was investigated in an ionic liquid electrolyte (0.7 M lithium bis(trifluoromethanesulfonyl)imide (LiNTf2)) in room temperature ionic liquid (N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide (MPPyrNTf2)). SEM and TEM images suggested that the electrochemical intercalation/deintercalation process in the ionic liquid electrolyte without vinylene carbonate (VC) leads to small changes on the surface of graphene particles. However, a similar process in the presence of VC results in the formation of a coating (SEI—solid electrolyte interface) on the graphene surface. During charging/discharging tests, the graphene electrode working together with the 0.7 M LiNTf2 in MPPyrNTf2 electrolyte lost its capacity, during cycling and stabilizes at ca. 200 mAh g?1 after 20 cycles. The addition of VC to the electrolyte (0.7 M LiNTf2 in MPPyrNTf2?+?10 wt.% VC) considerably increases the anode capacity. Electrodes were tested at different current regimes: ranging between 50 and 1,000 mA g?1. The capacity of the anode, working at a low current regime of 50 mA g?1, was ca. 1,250 mAh g?1, while the current of 500 mA g?1 resulted in capacity of 350 mAh g?1. Coulombic efficiency was stable and close to 95 % during ca. 250 cycles. The exchange current density, obtained from impedance spectroscopy, was 1.3?×?10?7 A cm?2 (at 298 K). The effect of the anode capacity decrease with increasing current rate was interpreted as the result of kinetic limits of the electrode operation.  相似文献   

3.
Iron tungstate (FeWO4) has been synthesized using two low-temperature synthetic routes and investigated as a new pseudocapacitive electrode material for supercapacitors operating in a neutral aqueous electrolyte. Its electrochemical properties are clearly related to the specific surface area and seem to originate from Fe3 +/Fe2 + fast surface reactions. For FeWO4 obtained by polyol-mediated synthesis, a high volumetric capacitance of 210 F·cm 3 (i.e. more than two times higher than that of activated carbon) was measured at 20 mV·s 1 with less than 5% fade over 10,000 cycles. Furthermore, unlike most of the previously investigated iron based electrodes, a unique pseudocapacitive behavior is observed, thus emphasizing the role of the crystallographic structure on the electrochemical signature.  相似文献   

4.

A new kind of supercapacitor by using chemical reduced graphene (CRG) as electrode material and ionic liquid with addition of acetonitrile as electrolyte is assembled and investigated. CRG materials with high surface area are prepared by chemical reduction of graphene oxide. The capacitive properties of the supercapacitor composed of the CRG and ionic liquid electrolyte are studied by electrical impedance spectroscopy, cyclic voltammetry and galvanostatic charge–discharge. With the combined advantages of graphene and ionic liquid, the supercapacitor shows perfect performance. The supercapacitor possesses wide cell voltage and good stability. The specific capacitance, energy density, and specific power density of the present supercapacitor are 132 Fg−1, 143.7 Wh kg−1, and 2.8 kW kg−1, respectively. The results demonstrate the potential application of electrical energy storage devices with high performance based on this new kind of supercapacitor.

  相似文献   

5.
Supercapacitor based on graphene and ionic liquid electrolyte   总被引:2,自引:0,他引:2  
A new kind of supercapacitor by using chemical reduced graphene (CRG) as electrode material and ionic liquid with addition of acetonitrile as electrolyte is assembled and investigated. CRG materials with high surface area are prepared by chemical reduction of graphene oxide. The capacitive properties of the supercapacitor composed of the CRG and ionic liquid electrolyte are studied by electrical impedance spectroscopy, cyclic voltammetry and galvanostatic charge–discharge. With the combined advantages of graphene and ionic liquid, the supercapacitor shows perfect performance. The supercapacitor possesses wide cell voltage and good stability. The specific capacitance, energy density, and specific power density of the present supercapacitor are 132?Fg??, 143.7?Wh?kg??, and 2.8?kW?kg??, respectively. The results demonstrate the potential application of electrical energy storage devices with high performance based on this new kind of supercapacitor.  相似文献   

6.
高比能超级电容器的研究进展   总被引:1,自引:0,他引:1  
与传统蓄电池相比,超级电容器具有高功率密度、长循环寿命和使用温度范围宽等优势,但其能量密度较低.本文对超级电容器的结构、分类以及发展状况进行了简要介绍,重点阐述了本实验室近年来在研制高性能超级电容器方面的相关工作.主要从两个方面来提高超级电容器的能量密度:(1)通过采用中性水系电解液、有机电解液和离子液体提高对称型碳基超级电容器的电压窗口;(2)应用非对称型超级电容器,即一个电极采用具有法拉第赝电容电极材料或电池电极材料,而另一个电极则采用具有双电层电容的电极材料.同时介绍了由锂离子电池电极材料/活性炭作为正极,石墨作为负极组成的锂离子混合型超级电容器.最后,对超级电容器的发展方向进行了展望.  相似文献   

7.
Yue  Shihong  Tong  Hao  Gao  Zhenzhen  Bai  Wenlong  Lu  Liang  Wang  Jie  Zhang  Xiaogang 《Journal of Solid State Electrochemistry》2017,21(6):1653-1663
Journal of Solid State Electrochemistry - Flexible nanoporous nitrogen-doped graphene film ( PNGF) prepared by facile hydrothermal ammonia reaction of nanoporous graphene oxide film (PGOF) is...  相似文献   

8.
In this work we have studied the effect of 1,2-dimethoxyethane(1,2-DME) addition(from 0 to 90 vol%)on the electrochemical behaviour of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulphonyl)imide(EMIm TFSI) as an electrolyte for supercapacitors,using cyclic voltammetry,electrochemical impedance spectroscopy and constant power methods.Also,the ionic conductivity and viscosity of EMIm TFSI and1,2-DME have been measured and discussed.The conductivity of the EMIm TFSI could be increased from 5.67 m S/cm up to 24.21 m S/cm by mixing EMIm TFSI with 1,2-DME.The stored power values for supercapacitors increased from 13 k W/kg to 20.5 k W/kg(correspond to 2 s application line),when the concentration of 1,2-DME increased up to 40 vol%.The supercapacitors based on the 40 vol% of 1,2-DME deliver the higher power density at the constant energy density,showing an excellent characteristics applicable in high rate supercapacitor devices.Nearly ideal capacitive behaviour has been established at potential scan rates v ≤ 10 m V/s and cell potential E ≤ 2.7 V.  相似文献   

9.
Here we present redox ionic liquid supercapacitors (RILSCs) which use electrolytes made from ionic liquids modified with an electroactive function to increase the energy density of activated carbon electrodes via faradaic reactions. More specifically, two different ionic liquids were made by modifying either the imidazolium cation or the bis(trifluoromethanesulfonyl)imide anion with ferrocene in order to determine the importance of the electroactive ion's polarity. The functionalization of an ionic liquid with ferrocene led to high concentrations of redox moieties in the electrolyte (2.4 M) and a large maximum operating voltage (2.5 V). An energy density of up to 13.2 Wh per kg (both electrodes) was obtained which represents an 83% increase vs. the unmodified ionic liquid. When the ionic liquid's anion is modified with ferrocene, the self-discharge at the positive electrode is fully suppressed due to the deposition of a film on the electrode. The results presented herein demonstrate that electroactive ionic liquids constitute a promising alternative to conventional solute in solvent electrolytes found in energy storage devices, and are particularly well-suited for redox-active electrolyte supercapacitors.  相似文献   

10.
A series of activated carbons with high mesoporous ratio were prepared by KOH reactivation based on activated carbon as the precursor. As the KOH/AC mass ratio was increased to 4:1, the mesoporous ratio increases from 60% to 76%, and the average pore size from 2.23 to 3.14?nm. Moreover, the specific capacitance for the activated carbon in ionic liquid 1-ethyl-3-methylmidazolium tetrafluoroborate ([EMIm]BF4) can reach the maximum value of 189?F?g?1 (8.0???F?cm?2). In addition, the decrease of specific capacitance for activated carbons by KOH reactivation with current density increase shows two regimes, suggesting that activated carbons with high mesoporous ratio are much fit for charge?Cdischarge at larger current density.  相似文献   

11.
Thermal nitridation of reduced graphene oxide sheets yields highly conductive (~1000-3000 S m(-1)) N-doped graphene sheets, as a result of the restoration of the graphene network by the formation of C-N bonded groups and N-doping. Even without carbon additives, supercapacitors made of the N-doped graphene electrodes can deliver remarkable energy and power when operated at higher voltages, in the range of 0-4 V.  相似文献   

12.
Zhang  Xuefang  Wang  Deping  Yang  Min  Xia  Xiaohong  Chen  Hui  Chen  Yuxi  Liu  Hongbo 《Journal of Solid State Electrochemistry》2018,22(6):1921-1931
Journal of Solid State Electrochemistry - Pyridine-enriched graphene sheets (DAP-RGOs) have been successfully prepared at mild reaction conditions from graphene oxide (GO) and 2, 6-diaminopyridine...  相似文献   

13.
1-Ethyl-3-methylimidazolium-bis(trifluoromethylsulfonyl)imide (EMI-TFSI) has been shown to reversibly permit lithium intercalation into standard graphite when vinylene carbonate is used in small amounts as an additive.  相似文献   

14.
15.
Three-dimensional porous nitrogen-doped graphene aerogels (NGAs) were synthesized by using graphene oxide (GO) and chitosan via a self-assembly process by a rapid method. The morphology and structure of the as-prepared aerogels were characterized. The results showed that NGAs possesed the hierarchical pores with the wide size distribution ranging from mesopores to macropores. The NGAs carbonized at different temperature all showed excellent electrochemical performance in 6 mol/L KOH electrolyte and the electrochemical performance of the NGA-900 was the best. When working as a supercapacitor electrode, NGA-900 exhibited a high specific capacitance (244.4 F/g at a current density of 0.2 A/g), superior rate capability (51.0% capacity retention) and excellent cycling life (96.2% capacitance retained after 5000 cycles).  相似文献   

16.
A nanoporous N-doped reduced graphene oxide (p-N-rGO) was prepared through carbothermal reaction between graphene oxide and ammonium-containing oxometalates as sulfur host for Li-S batteries. The p-N-rGO sheets have abundant nanopores with diameters of 10-40 nm and the nitrogen content is 2.65 at%. When used as sulfur cathode, the obtained p-N-rGO/S composite has a high reversible capacity of 1110 mAh g-1 at 1C rate and stable cycling performance with 781.8 mAh g-1 retained after 110 cycles, much better than those of the rGO/S composite. The enhanced electrochemical performance is ascribed to the rational combination of nanopores and N-doping, which provide efficient contact and wetting with the electrolyte, accommodate volume expansion and immobilize polysulfides during cycling.  相似文献   

17.
Developing electrolyte with high electrochemical stability is the most effective way to improve the energy density of double layer capacitors (DLCs), and ionic liquid is a promising choice. Herein, a novel ionic liquid based high potential electrolyte with a stabilizer, succinonitrile, was proposed to improve the high potential stability of the DLC. The electrolyte with 7.5 wt% succinonitrile added has a high ionic conductivity of 41.1 mS cm-1 under ambient temperature, and the DLC adopting this electrolyte could be charged to 3.0 V with stable cycle ability even under a discharge current density of 6 A g-1. Moreover, the energy density could be increased by 23.4% when the DLC was charged to 3.0 V compared to that charged to 2.7 V.  相似文献   

18.
The potential stability windows of chemical converted graphene in different aqueous electrolyte solutions were investigated for the first time. Based on this result, a supercapacitor with a high voltage and long cycle-life was prepared with the hydrated graphene films in the neutral aqueous solution at the maximum voltage of 1.6 and even 1.8 V. The electrochemical performance of the obtained sample was systematically investigated by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy. According to the cyclic voltammetry, hydrated graphene film can still retain rectangular shape at the high scan rate of 0.5 V/s in the neutral aqueous electrolyte. At a galvanostatic charge/discharge rate of 1 or 200 A/g, the specific capacitance of 202.3 or 138.1 F/g was delivered, respectively. Furthermore, the EIS results also confirm its fast neutral ion diffusion and high operating frequency of 9.34 Hz.  相似文献   

19.
以高浓度氧化石墨烯(GO)溶液作为反应前驱体,纳米纤维素(NC)作为物理间隔物和电解液储存器,通过简单的一步水热法制备了纳米纤维素/还原氧化石墨烯(NC/rGO)复合材料,并探究了其作为超级电容器电极材料的潜力。结果如下:NC添加量为1 mL所制备的NC/rGO-1具有最佳电化学性能。基于NC/rGO-1的无黏合剂对称型超级电容器在0.3 A·g-1的电流密度下显示出了269.33 F·g-1和350.13 F·cm-3的高质量和体积比电容,并在10.0 A·g-1时仍能达到215.88 F·g-1和280.62 F·cm-3(其初始值的80.15%)。组装器件还显示出了较高的质量和体积能量密度(9.3 Wh·kg-1和12.13 Wh·L-1)和出色的循环性能(10 A·g-1下10 000次循环后其初始比电容仅减少6.02%)。  相似文献   

20.
Nitrogen-doped porous carbons were prepared using a facile method, with low-biotechnology fulvic acid potassium salts as a precursor. The prepared carbons had a high surface area (1623 m2 g?1) and good electrochemical properties, making them suitable electrode materials for supercapacitors. Nitrogen-doped porous carbons were tested as an electrode in both 6 M KOH aqueous solution and different concentrations KNO3 aqueous solution. The nitrogen-doped porous carbons with unique microstructure and nitrogen functionalities exhibited a capacitance of 235 F g?1 in a 6 M KOH aqueous solution. Electrochemical investigation showed that the nitrogen-doped porous carbons exhibited a broad potential operational window in a 2.5 M KNO3 aqueous solution. Furthermore, a high capacitance retention of 88.1 % was achieved even after 5000 cycles at 1.7 V. Potassium nitrate solutions in a wide range of concentrations were also proven to be promising electrolytes for electrochemical capacitors because they are cheap, noncorrosive, electrochemically stable, and compatible to diverse current collectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号