首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The indentation response of polymer spherical shells is investigated. Finite deformation analyses are carried out with the polymer characterized as a viscoelastic/viscoplastic solid. Both pressurized and unpressurized shells are considered. Attention is restricted to axisymmetric deformations with a conical indenter. The response is analyzed for various values of the shell thickness to radius ratio and various values of the internal pressure. Two sets of material parameters are considered: one set having network stiffening at a moderate strain and the other having no network stiffening until very large strains are attained. The transition from an indentation type mode of deformation to a structural mode of deformation involving bending that occurs as the indentation depth increases is studied. The results show the effects of shell thickness, internal pressure and polymer constitutive characterization on this transition and on the deformation modes in each of these regimes.  相似文献   

5.
Buckling analysis of cylindrical shells with random geometric imperfections   总被引:2,自引:0,他引:2  
In this paper the effect of random geometric imperfections on the limit loads of isotropic, thin-walled, cylindrical shells under deterministic axial compression is presented. Therefore, a concept for the numerical prediction of the large scatter in the limit load observed in experiments using direct Monte Carlo simulation technique in context with the Finite Element method is introduced. Geometric imperfections are modeled as a two dimensional, Gaussian stochastic process with prescribed second moment characteristics based on a data bank of measured imperfections. (The initial imperfection data bank at the Delft University of Technology, Part 1. Technical Report LR-290, Department of Aerospace Engineering, Delft University of Technology). In order to generate realizations of geometric imperfections, the estimated covariance kernel is decomposed into an orthogonal series in terms of eigenfunctions with corresponding uncorrelated Gaussian random variables, known as the Karhunen-Loéve expansion. For the determination of the limit load a geometrically non-linear static analysis is carried out using the general purpose code STAGS (STructural Analysis of General Shells, user manual, LMSC P032594, version 3.0, Lockheed Martin Missiles and Space Co., Inc., Palo Alto, CA, USA). As a result of the direct Monte Carlo simulation, second moment characteristics of the limit load are presented. The numerically predicted statistics of the limit load coincide reasonably well with the actual observations, particularly in view of the limited data available, which is reflected in the statistical estimators.  相似文献   

6.
Non-linear vibrations of doubly curved shallow shells   总被引:1,自引:0,他引:1  
Large amplitude (geometrically non-linear) vibrations of doubly curved shallow shells with rectangular base, simply supported at the four edges and subjected to harmonic excitation normal to the surface in the spectral neighbourhood of the fundamental mode are investigated. Two different non-linear strain-displacement relationships, from the Donnell's and Novozhilov's shell theories, are used to calculate the elastic strain energy. In-plane inertia and geometric imperfections are taken into account. The solution is obtained by Lagrangian approach. The non-linear equations of motion are studied by using (i) a code based on arclength continuation method that allows bifurcation analysis and (ii) direct time integration. Numerical results are compared to those available in the literature and convergence of the solution is shown. Interaction of modes having integer ratio among their natural frequencies, giving rise to internal resonances, is discussed. Shell stability under static and dynamic load is also investigated by using continuation method, bifurcation diagram from direct time integration and calculation of the Lyapunov exponents and Lyapunov dimension. Interesting phenomena such as (i) snap-through instability, (ii) subharmonic response, (iii) period doubling bifurcations and (iv) chaotic behaviour have been observed.  相似文献   

7.
8.
9.
On the basis of nonlinear strain component formulations of three-dimensional continuum, this paper has derived the nonlinear strain component formulations of shells with initial geometric imperfections. The derivation is not confined to a special shell, therefore they possess general properties. These formulations provide the theoretical basis of the strain analysis for geometric nonlinear problems of shells with initial geometric imperfections  相似文献   

10.
Thermal instability of shallow spherical shells made of functionally graded material (FGM) and surface-bonded piezoelectric actuators is studied in this paper. The governing equations are based on the first order theory of shells and the Sanders nonlinear kinematics equations. It is assumed that the property of the functionally graded materials vary continuously through the thickness of the shell according to a power law distribution of the volume fraction of the constituent materials. The constituent material of the functionally graded shell is assumed to be a mixture of ceramic and metal. The analytical solutions are obtained for three types of thermal loadings and constant applied actuator voltage. Results for simpler states are validated with the known data in literature.  相似文献   

11.
A finite-element method to analyze the stress–strain state and stability of thin shells with geometric imperfections is proposed. An arbitrary curvilinear finite element with vector approximation of the displacement function is used. To solve the systems of nonlinear algebraic equations by iteration methods, linearized stiffness matrices of finite elements and residual and load vectors are formed. The stress–strain state of a thin-walled shell with real geometric imperfections under surface pressure and axial compression is analyzed. The effect of geometric imperfections on the critical combination of loads is evaluated  相似文献   

12.
A set of nonlinearly coupled algebraic and differential eigenvalue equations of nonlinear axisymmetric free vibration of orthotropic shallow thin spherical and conical shells are formulated.following an assumed time-mode approach suggested in this paper. Analytic solutions are presented and an asymptotic relation for the amplitude-frequency response of the shells is derived. The effects of geometrical and material parameters on vibrations of the shells are investigated.  相似文献   

13.
14.
Conclusions It is shown that Vlasov's explicit solutions for shallow spherical shells correspond to a very special boundary condition which does not usually occur in practice.A shell loaded by a normal loading p is fully discussed and it is shown that the discrepancy between these results and those obtained by Vlasov may be considerable. An asymptotic solution of the same problem is also given.Finally it is indicated how Geckeler's approximate equations can be derived from a suitable transformation of the linearized Marguerre equations.This paper was prepared under the support of the Argentine Council for Scientific and Technological Research.  相似文献   

15.
This paper refers to the question whether it would be advantageous to make numerous measurements of geometric imperfections of shells. Measurements are presented of the geometric imperfections of sixteen flat plates of box columns and are compared with the effective imperfections of those plates during postbuckling; the two are not found to agree always. Therefore, the paper wishes to raise the question whether, for a program of imperfection measurements to be useful, it should not concentrate on effective imperfections.  相似文献   

16.
In analyzing hyperbolic shells of revolution with non-axisymmeteric imperfections, an approximate method based on simulating the effect of imperfections by the application of fictitious normal pressure loading on the perfect shell is investigated. In the analysis of a shell of revolution with a bulge-type imperfection under non-axisymmetric loads, an efficient algorithm of applying the method is developed: the effect of individual curvature errors on stress resultants and couples are separately considered, while the interactions among various curvature errors are properly treated in the analysis by an iterative procedure. This algorithm avoids repeated analyses for non-axisymmetric loads and may be implemented with a purely axisymmetric analysis capability.A hyperbolic cooling tower shell with a bulge-type imperfection is analyzed under dead load and wind load conditions by the equivalent load method. A direct analysis of the imperfect shell is also made by a specialized finite element program. Through numerical studies, the accuracy and applicability of the equivalent load method are examined.  相似文献   

17.
18.
19.
The effect of local geometric imperfections on the buckling and postbuckling of composite laminated cylindrical shells subjected to combined axial compression and uniform temperature loading was investigated. The two cases of compressive postbuckling of initially heated shells and of thermal postbuckling of initially compressed shells are considered. The formulations are based on a boundary layer theory of shell buckling, which includes the effects of the nonlinear prebuckling deformation, the nonlinear large deflection in the postbuckling range and the initial geometric imperfection of the shell. The analysis uses a singular perturbation technique to determine buckling loads and postbuckling equilibrium paths. Numerical examples are presented that relate to the performances of cross-ply laminated cylindrical shells with or without initial local imperfections, from which results for isotropic cylindrical shells follow as a limiting case. Typical results are presented in dimensionless graphical form for different parameters and loading conditions.  相似文献   

20.
Cylindrical shells of arbitrary wall thickness subjected to uniform radial tensile or compressive dead-load traction are investigated. The material of the shell is assumed to be homogeneous, isotropic, compressible and hyperelastic. The stability of the finitely deformed state and small, free, radial vibrations about this state are investigated using the theory of small deformations superposed on large elastic deformations. The governing equations are solved numerically using both the multiple shooting method and the finite element method. For the finite element method the commercial program ABAQUS is used.1 The loss of stability occurs when the motions cease to be periodic. The effects of several geometric and material properties on the stress and the deformation fields are investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号