首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lithium-ion battery based on LiMn2O4/Li4Ti5O12 materials was assembled for the first time. The cathode and anode of this battery are prepared with the aqueous combined binder poly-3,4-ethylenedioxythiophene: polystyrene sulfonate/carboxymethylcellulose (without polyvinylidene fluoride). The capacity of the LiMn2O4/Li4Ti5O12 battery was found to be 75 mA h g–1 at 0.1 C and 55 mA h g–1 at 1 C. A 95% capacity was retained after 100 charge-discharge cycles. The batteries demonstrated a high Coulombic efficiency close to 100%. Scanning electron microscopy demonstrated that using the conducting binder poly-3,4-ethylenedioxythiophene: polystyrene sulfonate/carboxymethylcellulose provides formation of dense compact layers of electrode materials with good adhesion to the substrate. The electrode structure remains maintained after 100 charge-discharge cycles.  相似文献   

2.
Li4Ti5O12/Li2TiO3 composite nanofibers with the mean diameter of ca. 60 nm have been synthesized via facile electrospinning. When the molar ratio of Li to Ti is 4.8:5, the Li4Ti5O12/Li2TiO3 composite nanofibers exhibit initial discharge capacity of 216.07 mAh g?1 at 0.1 C, rate capability of 151 mAh g?1 after being cycled at 20 C, and cycling stability of 122.93 mAh g?1 after 1000 cycles at 20 C. Compared with pure Li4Ti5O12 nanofibers and Li2TiO3 nanofibers, Li4Ti5O12/Li2TiO3 composite nanofibers show better performance when used as anode materials for lithium ion batteries. The enhanced electrochemical performances are explained by the incorporation of appropriate Li2TiO3 which could strengthen the structure stability of the hosted materials and has fast Li+-conductor characteristics, and the nanostructure of nanofibers which could offer high specific area between the active materials and electrolyte and shorten diffusion paths for ionic transport and electronic conduction. Our new findings provide an effective synthetic way to produce high-performance Li4Ti5O12 anodes for lithium rechargeable batteries.  相似文献   

3.
Spinel phase Li4Ti5O12 (s-LTO) with an average primary particle size of 150 nm was synthesised via a solid state route by calcining a precursor mixture at 600 °C. The precursor was prepared from a stoichiometric mixture of TiO2 nanoparticles and an ethanolic solution of Li acetate and activated by ball-milling. Effects of the calcination temperature and atmosphere are examined in relation to the coexistence of impurity phases by X-ray diffraction and 6Li MAS NMR. The charge capacity of s-LTO, determined from cyclic voltammogram at a scan rate of 0.1 mV/s, was 142 mAh/g. The capacity of our optimised material is superior to that of commercially available spinel (a-LTO), despite the considerably smaller BET-specific surface area of the former. The superior properties of our material were also demonstrated by galvanostatic charging/discharging. From these observations, we conclude that the presented low-temperature solid state synthesis route provides LTO with improved electrochemical performance.  相似文献   

4.
A systematic investigation is conducted to evaluate the influence of dissolved manganese ions from LiMn2O4 cathode on the degradation of Li4Ti5O12-based lithium-ion batteries. Worse capacity fading is found in Li4Ti5O12-based full cells with increasing manganese ion addition. The interfacial film covered on Li4Ti5O12 anode is affected by the manganese ion contamination during cycling, which becomes thicker but more non-uniform, and is composed by less ratio of compact components and more ratio of loose components compared with that free of contamination. Such flawed passivation film cannot restrain the further penetration of electrolyte and inhibit the contact between electrolyte and Li4Ti5O12 anodes efficiently, thus triggering more interfacial reactions and that should be the reason for the more severe capacity degradation. Accordingly, we suggest that in addition to optimizing the chemistry and microstructure of Li4Ti5O12 electrode, more attention should also be paid to minimizing the destructive effect imposed on the passivation film of Li4Ti5O12 electrode by the transition metal ion contaminations.  相似文献   

5.
Compatibility of the lithium-titanium spinel Li4Ti5O12 in contact with precursors of lithium-conducting solid electrolytes of composition Li1.3Al0.3Ti1.7(PO4)3 (LATP), Li1.5Al0.5Ge1.5(PO4)3 (LAGP), Li0.5La0.5TiO3 (LLT) was studied. It was found that, in sintering of Li4Ti5O12 brought in contact with LATP and LAGP, a solid-phase reaction occurs to give nonconducting phases (TiO2 and Li3PO4). The conductivity of the stable composite Li4Ti5O12/LLT (10%) is higher than that of the starting Li4Ti5O12, which makes it possible to regard the composite as a promising anode material for lithium-ion batteries.  相似文献   

6.
Three kinds of LiFePO4 materials, mixed with carbon (as LiFePO4/C), doped with Ti (as Li0.99Ti0.01FePO4), and treated both ways (as Li0.99Ti0.01FePO4/C composite), were synthesized via ball milling by solid-state reaction method. The crystal structure and electrochemical behavior of the materials were investigated using X-ray diffraction, SEM, TEM, cyclic voltammetry, and charge/discharge cycle measurements. It was found that the electrochemical behavior of LiFePO4 could be increased by carbon coating and Ti-doping methods. Among the materials, Li0.99Ti0.01FePO4/C composite presents the best electrochemical behavior, with an initial discharge capacity of 154.5 mAh/g at a discharge rate of 0.2 C, and long charge/discharge cycle life. After 120 cycles, its capacity remains at 92% of the initial capacity. The Li0.99Ti0.01FePO4/C composite developed here can be used as the cathode material for lithium ion batteries.  相似文献   

7.
Phase-pure nanocrystalline Li4Ti5O12 with BET surface areas between 183 and 196 m2/g was prepared via an improved synthetic protocol from lithium ethoxide and titanium(IV) butoxide. The phase purity was proved by X-ray powder diffraction, Raman spectroscopy and cyclic voltammetry. Thin-film electrodes were prepared from two nanocrystalline samples of Li4Ti5O12 and one microcrystalline commercial sample. Li-insertion behavior of these electrodes was related to the particle size.Presented at the 3rd International Meeting on Advanced Batteries and Accumulators, 16–20 June 2002, Brno, Czech Republic  相似文献   

8.
Layered Li-rich transition metal oxides are considered among the most promising cathode materials for high energy density lithium-ion batteries. It was studied how the method and conditions of synthesis of Li-rich oxides Li1.2Mn0.54Ni0.13Co0.13O2 affect their electrochemical properties. Coprecipitation methods and modified Pechini process were used. It was shown that it is necessary to carefully choose the synthesis conditions when using the modified Pechini method because of their significant effect on the morphology of Li-rich oxides. Samples were obtained with high electrochemical characteristics: capacity discharge of 260–270 mAh/g (16 mA/g) and 60–70 mAh/g (988 mA/g) within the voltage range of 2.5–4.8 V.  相似文献   

9.
Li2ZnTi3O8/C nanocomposite has been synthesized using phenolic resin as carbon source in this work. The structure, morphology, and electrochemical properties of the as-prepared Li2ZnTi3O8 samples were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), Raman spectroscopy (RS), galvanostatic charge–discharge, and AC impedance spectroscopy. SEM images show that Li2ZnTi3O8/C was agglomerated with a primary particle size of ca. 40 nm. TEM images reveal that a homogeneous carbon layer (ca. 5 nm) formed on the surface of Li2ZnTi3O8 particles which is favorable to improve the electronic conductivity and inhibit the growth of Li2ZnTi3O8 during annealing process. The as-prepared Li2ZnTi3O8/C composite with 6.0 wt.% carbon exhibited a high initial discharge capacity of 425 and 159 mAh g?1 at 0.05 and 5 A g?1, respectively. At a high current density of 1 A g?1, 95.5 % of its initial value is obtained after 100 cycles.  相似文献   

10.
Electrical conductivity in the monoclinic Li2TiO3, cubic Li1.33Ti1.67O4, and in their mixture has been studied by impedance spectroscopy in the temperature range 20–730 °C. Li2TiO3 shows low lithium ion conductivity, σ300≈10–6 S/cm at 300 °C, whereas Li1.33Ti1.67O4 has 3×10–8 at 20 °C and 3×10–4 S/cm at 300 °C. Structural properties are used to discuss the observed conductivity features. The conductivity dependences on temperature in the coordinates of 1000/T versus logeT) are not linear, as the conductivity mechanism changes. Extrinsic and intrinsic conductivity regions are observed. The change in the conductivity mechanism in Li2TiO3 at around 500–600 °C is observed and considered as an effect of the first-order phase transition, not reported before. Formation of solid solutions of Li2– x Ti1+ x O3 above 900 °C significantly increases the conductivity. Irradiation by high-energy (5 MeV) electrons causes defects and the conductivity in Li2TiO3 increases exponentially. A dose of 144 MGy yields an increase in conductivity of about 100 times at room temperature. Electronic Publication  相似文献   

11.
The limited electrochemical stability and the flammability of the liquid electrolytes presently used in Li-ion batteries stimulates the search for alternatives including ceramic solid electrolytes. Moreover, solid electrolytes also fulfil crucial functions in various large-scale energy storage systems, e.g. as anode-protecting membranes in aqueous Li-air batteries. Here, the processing of the solid electrolytes Li7La3Zr2O12 is studied for applications in Li-air batteries. Molten salt method (MSM) was adopted previously on synthesis of simple oxides; to the best of our knowledge, we report for the first time the adaptation of the MSM to prepare this class of solid electrolytes. As a model compound, we prepared the garnet-related Li6.75La3Zr1.75Ta0.25O12. It has been prepared by using stoichiometric amounts of La2O3, ZrCl4, and Ta2O5 in excess 0.88 M LiNO3:0.12 M LiCl molten salt. Subsequently, samples were heated to various temperatures in the range 600–900 °C for 6 h in air in a recrystallized alumina crucible and finally washed with distilled water to remove excess salts. The obtained Li6.75La3Zr1.75Ta0.25O12 electrolyte powder was characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, Raman, and impedance spectroscopy as well as surface area measurements. The cubic single phase was obtained for samples prepared at temperatures ≥700 °C. The effects of washing with water or aqueous LiOH solution on the structure and conductivity of the phases will be discussed.  相似文献   

12.
In this study, the effect of the sol-gel starting materials with different particle sizes on the sol-gel-synthesized spinel Li4Ti5O12 (LTO) was systematically investigated. The physical and electrochemical properties of the synthesized materials were characterized by X-ray diffraction, scanning electron microscopy, Brunauer-Emmett-Teller-specific surface area analyses, galvanostatic charge/discharge tests, cyclic voltammetry, and electrochemical impedance spectroscopy. It was found that the initial particle size of sol-gel starting material played a crucial role on the properties of as-prepared LTOs. The LTO synthesized with the relatively finer particle size of starting materials possessed relatively smaller particle size and larger specific surface area and therefore resulted in the superior electrochemical properties. The initial discharge capacity of the as-prepared LTO exhibited 168.2, 150.6, and 142.7 mAh g?1 at current densities of 1, 5, and 10 C, respectively, and up to 95, 95, and 90 % of the corresponding initial discharge capacity was retained after 50 cycles.  相似文献   

13.
Here, we demonstrate a new, rapid, and flexible hydrothermal method using the V2O5 and LiOH as the precursors to synthesize Li3VO4. The ratios of precursor of V2O5 and LiOH can be changed in a wide range to control different preferred facets and morphologies, and the reason has been discussed from the structure of Li3VO4. The electrical performance of the Li3VO4 has also been systematically investigated. The thus-synthesized Li3VO4 exhibits significantly improved rate capability and cycling life compared with commercial graphite, synthesized Li4Ti5O12, and previously reported results on Li3VO4.  相似文献   

14.
LiNi0.5Mn1.5O4 powders were prepared through polymer-pyrolysis method. XRD and TEM analysis indicated that the pure spinel structure was formed at around 450 °C due to the very homogeneous intermixing of cations at the atomic scale in the starting precursor in this method, while the well-defined octahedral crystals appeared at a relatively high calcination temperature of 900 °C with a uniform particle size of about 100 nm. When cycled between 3.5 and 4.9 V at a current density of 50 mA/g, the as prepared LiNi0.5Mn1.5O4 delivered an initial discharge capacity of 112.9 mAh/g and demonstrated an excellent cyclability with 97.3% capacity retentive after 50 cycles.  相似文献   

15.
Spinel ferrites are an amazing class of materials that can find application in different fields, from sensors and lithium-ion batteries to the intriguing biomedical field. For the use as anode in lithium-ion batteries, ZnFe2O4 is rather competitive due to low price, abundance, environmental benignity, working voltage of ~1.5 V, and, most importantly, a high theoretical specific capacity (~1072 mA h g?1). For its practical application, however, some issues must be overcome, in particular its fast capacity fading and poor rate capability resulting from an inherent low electronic conductivity. Possible strategies are represented by ferrite carbon coating/embedding, peculiar synthesis routes, and doping. In this frame, we synthesized Ca- and Al-doped ZnFe2O4 nanoparticles by using microwave-assisted combustion synthesis, followed by a classical carbon coating (determined as about 5 wt% by thermogravimetry). A good solubility of Ca and Al up to 25 atom% on both Zn and Fe sites was obtained. Cyclic voltammetries evidenced redox reactions involving Zn and Fe ions, but also the Al intervention could be supposed. Galvanostatic charge–discharge cycles proved that particularly Al ions were useful to improve the anode structural stability at high C rate (up to 3C), thanks to the stronger Al–O bonds with respect to Fe–O ones. A further improvement of capacities comes from the use of sodium alginate as binder to substitute polyvinylidene fluoride in the anode preparation.  相似文献   

16.
Li0.97Er0.01FePO4/C composite was prepared by solid-state reaction, using particle modification with amorphous carbon from the decomposition of glucose and lattice doping with supervalent cation Er3+. All samples were characterized by X-ray diffraction, scanning electron microscopy, multi-point Brunauer Emmett and Teller methodes. The electrochemical tests show Li0.97Er0.01FePO4/C composite obtains the highest discharge specific capacity of 154 mAh g−1 at C/10 rate and the best rate capability. Its specific capacity reaches 131 mAh g−1 at 2C rate. Its capacity loss is only 14.9 % when the rate varies from C/10 to 2C.  相似文献   

17.
Neodymium(III) peroxotitanate is used as a precursor for obtaining Nd2TiO5. The last one possesses numerous valuable electrophysical properties. TiCl4, Nd(NO3)3·6H2O and H2O2 in mol ratio 1:2:10 were used as starting materials. The reaction ambience was alkalized to pH = 9 with a solution of NH3. The obtained neodymium(III) peroxotitanate and intermediate compounds of the isothermal heating were proved by the help of quantitative analysis and infrared spectroscopy (IRS). It has Nd4[Ti2(O2)4(OH)12]·7H2O composition. The absorption band observed in IRS at 831 cm?1 relates to a triangular bonding of the peroxo group of Ti, at 1062 cm?1—terminal groups Ti–OH and at 1491 and 1384 cm?1—the bridging OH?-groups Ti–O(H)–Ti. Nd2TiO5 was obtained by thermal decomposition of neodymium(III) peroxotitanate. The isothermal conditions for decomposition were determined on the base of differential thermal analysis, thermogravimetric and differential scanning calorimetry results in the temperature range of 20–1000 °C. The mechanism of thermal decomposition of Nd4[Ti2(O2)4(OH)12]·7H2O to Nd2TiO5 was studied. In the temperature range of 20–208 °C, a simultaneous decomposition of the peroxo groups by the separation of oxygen and hydrate water is conducted and Nd4[Ti2O4(OH)12] is obtained. From 208 to 390 °C, the terminal OH?-groups are separated and Nd4[Ti2O7(OH)6] is formed. In the range of 390–824 °C, the bridging OH?-groups are completely decomposed to Nd2TiO5. The optimal conditions for obtaining nanocrystalline Nd2TiO5 are 900 °C for 6 h and 20–80 nm.  相似文献   

18.
Vanadium pentoxide (V2O5) nanofibers (NFs) with a thin carbon layer of 3–5 nm, which wrapped on V2O5 nanoparticles, and integrated multiwalled carbon nanotubes (MWCNTs) have been fabricated via simple electrospinning followed by carbonization process and post-sintering treatment. The obtained composite displays a NF structure with V2O5 nanoparticles connected to each other, and good electrochemical performance: delivering initial capacity of 320 mAh g?1 (between 2.0 and 4.0 V vs. Li/Li+), good cycling stability (223 mAh g?1 after 50 cycles), and good rate performance (~?150 mAh g?1 at 2 A g?1). This can attribute to the carbon wrapped on the V2O5 nanoparticles which can not only enhance the electric conductivity to decrease the impendence of the cathode materials but also maintain the structural stability to protect the nanostructure from the corruption of electrolyte and the strain stress due to the Li-ion intercalation/deintercalation during the charge/discharge process. And, the added MWCNTs play the role of framework of the unique V2O5 coated by carbon layer and composited with MWCNT NFs (V2O5/C@MWCNT NFs) to ensure the material is more stable.  相似文献   

19.
A series of lithium iron phosphates was synthesized via the sol–gel route. Iron phosphides, which are electronic conductors, were formed when sintered at 850°C. Magnetic susceptibility measurements on the samples show antiferromagnetic behaviour with T N=50±2 K for LiFePO4 and Li0.95Mg0.05PO4 sintered at temperatures below 850°C. The LiFePO4 and Li0.95Mg0.05FePO4 cathodes show a stable electrochemical capacity in the range of 150–160 mA h/g on cycling. The cyclability deteriorates with increasing sample sintering temperature due to the increased crystal size and impurities.  相似文献   

20.
The novel Li3V2(PO4)3 glass-ceramic nanocomposites were synthesized and investigated as electrodes for energy storage devices. They were fabricated by heat treatment (HT) of 37.5Li2O–25V2O5–37.5P2O5?mol% glass at 450 °C for different times in the air. XRD, SEM, and electrochemical methods were used to study the effect of HT time on the nanostructure and electrochemical performance for Li3V2(PO4)3 glass-ceramic nanocomposites electrodes. XRD patterns showed forming Li3V2(PO4)3 NASICON type with monoclinic structure. The crystalline sizes were found to be in the range of 32–56 nm. SEM morphologies exhibited non-uniform grains and changed with variation of HT time. The electrochemical performance of Li3V2(PO4)3 glass-ceramic nanocomposites was investigated by using galvanostatic charge/discharge methods, cyclic voltammetry, and electrochemical impedance spectroscopy in 1 M H2SO4 aqueous electrolyte. The glass-ceramic nanocomposites annealed for 4 h, which had a lower crystalline size, exhibited the best electrochemical performance with a specific capacity of 116.4 F g?1 at 0.5 A g?1. Small crystalline size supported the lithium ion mobility in the electrode by decreasing the ion diffusion pathway. Therefore, the Li3V2(PO4)3 glass-ceramic nanocomposites can be promising candidates for large-scale industrial applications in high-performance energy storage devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号