首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
We report on an inorganic–organic hybrid nanocomposite that represents a novel kind of fiber coating for solid-phase microextraction (SPME) of polycyclic aromatic hydrocarbons (PAHs). The material is composed of ZnO nanoparticles, polythiophene and hexagonally ordered silica, and displays good extraction capability due to its nanostructure. The nanocomposite was synthesized by an in-situ polymerization technique, and the ZnO nanoparticles were anchored to the pores in the walls. The ZnO/polythiophene/hexagonally ordered silica (ZnO/PT/SBA-15) nanocomposite was then deposited on a stainless steel wire to obtain the fiber for SPME of PAHs. Optimum conditions include an extraction temperature of 85 °C (for 30 min only), a desorption temperature of 260 °C (for 2 min), and a salt concentration (NaCl) of 20 % (w/v). The detection limits are between 8.2 and 20 pg mL?1, and the linear responses extend from 0.1 to 10 ng mL?1. The repeatability for one fiber (for n?=?5), expressed as relative standard deviation, is between 4.3 and 9.1 %. The method offers the advantage of being simple to use, rapid, and low-cost (in terms of equipment). The thermal stability of the fiber and high relative recovery (compared to conventional methods) represent additional attractive features.
Figure
We report on an inorganic–organic hybrid nanocomposite that represents a novel kind of fiber coating with thermal stability and high relative recovery for solid-phase microextraction (SPME) of polycyclic aromatic hydrocarbons (PAHs). The method is simple to use, rapid and low-cost.  相似文献   

2.
We reported proton-conducting membranes with novel microstructure based on partially phosphorylated poly(vinyl alcohol) (P-PVA) and polyethylene glycol (PEG) grafted silica (PEG-SiO2) particles. The PEG-SiO2 particles were synthesized through acid catalyzed hydrolysis and condensation reactions. The membranes were characterized for their mechanical, structural, morphological, and electrical properties by employing tensile test, Fourier transform infrared (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), impedance analyzer, respectively. In these membranes, P-PVA acts as the proton source and PEG act as the proton solvent. The PEG-riched phases in the hybrid membrane form continuous ionic conducting pathways and subsequently give high ionic conductivity. The results suggest that the obtained membrane shows good thermal stability, excellent mechanical property and high ionic conductivity, and the low-cost hybrid membrane can be a promising candidate for intermediate temperature fuel cell systems.  相似文献   

3.
This study concerns the organic–inorganic hybrid coating of silica sol based on dyed cotton, silk and wool fabrics in order to increase the repellence to capsicum oil via adding methyltriethoxysilane, octyltriethoxysilane, hexadec-ltrimethoxysilane or tridecafluorooctyltriethoxysilane (FAS) in the inorganic silica sol. The dyed cotton fabric treated with hybrid silica sol doped with FAS (F-silica sol, FAS 4 %) presents oil-repellent capability, and the contact angles of capsicum oil on the treated cotton, silk and wool fabrics are 98.5°, 111.59° and 122.15°, respectively. A high FAS concentration (20 %) can improve the oil-repellent ability to 5 grades comparing to the untreated fabrics. The color strengths (K/S) of the coated fabrics change slightly, while the maximum absorption wavelengths of the coated fabrics are the same as the untreated fabrics. Although the drape coefficient of cotton fabric is increased to 54 % from 39 % after coated with F-silica sol, the effect is not significant. Compared to the weight gain rate of untreated cotton, silk and wool samples (1.89, 1.23 and 2.38 %), the weight gain rate of the cotton, silk and wool samples coated with F-silica sol are 6.99, 4.76 and 7.69 %, respectively. The calculated sol–gel weight gains (5.10, 3.53 and 5.31 %) of coated fabrics indicate that the silica coating is subsistent on the fiber surfaces.  相似文献   

4.
5.
6.
Journal of Sol-Gel Science and Technology - We demonstrate the synthesis of hydrophobic silica nanoparticles from sodium silicate and their application in separation of the oil–water mixture....  相似文献   

7.
《Comptes Rendus Chimie》2003,6(8-10):1153-1164
Organophosphorus acids (phosphoric, phosphonic, and phosphinic) and their derivatives (salts, esters) are highly promising coupling molecules that allow the anchoring of organic groups to inorganic solids. In this article we briefly review our contribution in the preparation of materials based on organophosphorus coupling molecules: new sol–gel routes to microporous zirconium phosphonates and metal oxide/phosphonate or phosphinate hybrids, and surface modification of metal oxide nanoparticles. The potentialities of the sol–gel and surface modification approaches are illustrated by the immobilization of organometallic metal complexes using phosphine-phosphonate molecules. To cite this article: P.-H. Mutin et al., C. R. Chimie 6 (2003).  相似文献   

8.
This study utilised response surface methodology to optimise the conditions for the extraction of A. rugosa seeds oil (ARO). Single–factor experiment and response surface methodology (RSM) were performed to identify the extraction time, liquid–solid ratio and extraction temperature that provided the highest yield of ARO. The optimal extraction time, liquid–solid ratio and extraction temperature were 8 h, 4:1 mL/g and 55 °C. The fatty acids (FAs) content and oil yield obtained through the optimised impregnation–extraction process were 19.67 mg/g and 32.1%. These values matched well with the predicted values. Linolenic acid was identified to be the main active ingredient of ARO. The high–performance liquid chromatography–charged aerosol detection method presented here is fast and does not require derivatisation. Therefore, it could be used to quantitatively analyse the FAs present in ARO and applied to detect compounds with low or no ultraviolet response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号