首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An apparatus for detailed study of quantum state-resolved inelastic energy transfer dynamics at the gas-liquid interface is described. The approach relies on supersonic jet-cooled molecular beams impinging on a continuously renewable liquid surface in a vacuum and exploits sub-Doppler high-resolution laser absorption methods to probe rotational, vibrational, and translational distributions in the scattered flux. First results are presented for skimmed beams of jet-cooled CO(2) (T(beam) approximately 15 K) colliding at normal incidence with a liquid perfluoropolyether (PFPE) surface at E(inc) = 10.6(8) kcal/mol. The experiment uses a tunable Pb-salt diode laser for direct absorption on the CO(2) nu(3) asymmetric stretch. Measured rotational distributions in both 00(0)0 and 01(1)0 vibrational manifolds indicate CO(2) inelastically scatters from the liquid surface into a clearly non-Boltzmann distribution, revealing nonequilibrium dynamics with average rotational energies in excess of the liquid (T(s) = 300 K). Furthermore, high-resolution analysis of the absorption profiles reveals that Doppler widths correspond to temperatures significantly warmer than T(s) and increase systematically with the J rotational state. These rotational and translational distributions are consistent with two distinct gas-liquid collision pathways: (i) a T approximately 300 K component due to trapping-desorption (TD) and (ii) a much hotter distribution (T approximately 750 K) due to "prompt" impulsive scattering (IS) from the gas-liquid interface. By way of contrast, vibrational populations in the CO(2) bending mode are inefficiently excited by scattering from the liquid, presumably reflecting much slower T-V collisional energy transfer rates.  相似文献   

2.
The isotopic exchange of CO adsorbed on Pt(111) was studied using polarization modulation IR reflection absorption spectroscopy (PM-IRRAS) and temperature programmed desorption. It was found that the rate constants for the exchange reaction are much higher than would be expected from previous investigations of CO adsorbed on Pt nanoparticles. The adsorption of CO on Pt(111) under elevated pressures of CO and H(2) was also studied using PM-IRRAS. It was seen that CO pressures above 1 mbar lead to a shift in the absorption peak arising from CO adsorbed on a bridge site from 1850 to 1875 cm(-1). Exposing the CO-covered Pt(111) surface to 1000 mbar H(2) did not lead to any significant desorption of CO at room temperature, whereas at 363 K H(2) exposure did lead to a significant desorption of CO, due to the increased chemical potential of H(2). In a mixture of CO and H(2) with partial pressures of 0.01 mbar and 1000 mbar, respectively, no significant effect of H(2) on the PM-IRRAS spectrum was seen at temperatures below 423 K.  相似文献   

3.
Interactions of 13CO2 guest molecules with vapor-deposited porous H2O ices have been examined using temperature-programmed desorption (TPD) and Fourier transform infrared (FTIR) techniques. Specifically, the trapping and release of 13CO2 by amorphous solid water (ASW) has been studied. The use of 13CO2 eliminates problems with background CO2. Samples were prepared by (i) depositing 13CO2 on top of ASW, (ii) depositing 13CO2 underneath ASW, and (iii) codepositing 13CO2 and H2O during ASW formation. Some of the deposited 13CO2 becomes trapped when the ice film is annealed. The amount of 13CO2 trapped in the film depends on the deposition method. The release of trapped molecules occurs in two stages. The majority of the trapped 13CO2 escapes during the ASW-to-cubic ice phase transition at 165 K, and the rest desorbs together with the cubic ice film at 185 K. We speculate that the presence of 13CO2 at temperatures up to 185 K is due to 13CO2 that is trapped in cavities within the ASW film. These cavities are similar to ones that trap the 13CO2 that is released during crystallization. The difference is that 13CO2 that remains at temperatures up to 185 K does not have access to escape pathways to the surface during crystallization.  相似文献   

4.
The formation and dissociation chemistry of the NH species on Pt(111) was characterized with reflection absorption infrared spectroscopy and temperature programmed desorption. Irradiation of a chemisorbed bilayer of ammonia with a 100 eV electron beam at 85 K leads to a mixture of NH, N, and H on the surface. Annealing to temperatures in the range of 200-300 K leads to reaction of N and H to form additional NH. The NH species has an intense and narrow NH stretch peak at 3320 cm(-1), while no peak due to the PtNH bend is observed above 800 cm(-1). The NH species is stable up to a temperature of approximately 400 K. The surface N atoms produced from NH dissociation are readily hydrogenated back to NH by exposure of the surface to H2. However, NH cannot be further hydrogenated to generate adsorbed NH2 or to NH3 under the conditions used here. Exposure of the NH/Pt(111) surface to D2 at 380 K produces the ND species. Comparison with the results of density functional theory calculations based on small Pt clusters indicates that NH occupies three-fold hollow sites with the molecular axis perpendicular to the surface.  相似文献   

5.
采用浸渍法和沉积-沉淀法制备了四种不同的Au/Al2O3催化剂,测定了它们在氢气还原前后及催化反应后的金含量及比表面积,结果表明,制备方法明显影响催化剂的金含量,应用X-光粉末衍射技术研究了这些催化剂经还原处理及反应后的物相变化,金以Au^0物相存在,没有发现氧化态的金物相,考察了该催化剂在CH4/CO2重整反应中的催化活性,发现金催化剂的活性取决于金粒子的大小,浸渍法制备的金催化剂具有较大的金晶粒尺寸,催化活性低,沉积-沉淀法制备的金催化剂金晶粒尺寸较小,催化活性较高,以尿素为沉淀剂制备的催化剂给出1073K时的CH4和CO2转化率分别为8.1%和17.6%,高温反应不仅导致金晶粒的聚集,而且存在明显的金流失现象。  相似文献   

6.
To elucidate the dehydrogenation mechanism of dodecahydro-N-ethylcarbazole (H(12)-NEC) on supported Pd catalysts, we have performed a model study under ultra high vacuum (UHV) conditions. H(12)-NEC and its final dehydrogenation product, N-ethylcarbazole (NEC), were deposited by physical vapor deposition (PVD) at temperatures between 120 K and 520 K onto a supported model catalyst, which consisted of Pd nanoparticles grown on a well-ordered alumina film on NiAl(110). Adsorption and thermally induced surface reactions were followed by infrared reflection absorption spectroscopy (IRAS) and high-resolution X-ray photoelectron spectroscopy (HR-XPS) in combination with density functional theory (DFT) calculations. It was shown that, at 120 K, H(12)-NEC adsorbs molecularly both on the Al(2)O(3)/NiAl(110) support and on the Pd particles. Initial activation of the molecule occurs through C-H bond scission at the 8a- and 9a-positions of the carbazole skeleton at temperatures above 170 K. Dehydrogenation successively proceeds with increasing temperature. Around 350 K, breakage of one C-N bond occurs accompanied by further dehydrogenation of the carbon skeleton. The decomposition intermediates reside on the surface up to 500 K. At higher temperatures, further decay to small fragments and atomic species is observed. These species block most of the absorption sites on the Pd particles, but can be oxidatively removed by heating in oxygen at 600 K, fully restoring the original adsorption properties of the model catalyst.  相似文献   

7.
The co-adsorption of ammonia and carbon monoxide on the Pt(111) surface was studied at temperatures <300 K using high-resolution electron energy loss spectroscopy (HREELS). The state of ammonia and carbon monoxide molecules in the co-adsorption layer was established to differ significantly from their state in individual adsorption layers. The adsorption of CO on a clean surface occurs with the primary filling of single-bound terminal sites, whereas the bridging sites are filled preferably by CO molecules in the presence of NH3,ads. The symmetry axis of ammonia molecules adsorbed on the clean surface is parallel to the normal to the surface, whereas in the co-adsorption layers the interaction with COads molecules results in the deviation of the symmetry axis toward the surface. Presumably, the observed changes in the state of adsorbed molecules are due to the donor-acceptor interaction inducing the electron density transfer from ammonia molecules across the metal surface to CO molecules.  相似文献   

8.
The infrared spectra of the carbon monoxide-water cluster as well as the CO monomer and dimer in an argon matrix at cryogenic temperatures have been reinvestigated on the basis of the isotope substitution experiment with 12CO and 13CO. Lines due to the CO-H2O 2-1 cluster in the matrix have been unambiguously identified in the CO and OH stretching regions. The isotope effect on the vibrational frequency of the cluster is observed in the CO stretching vibration but neither in the symmetric nor antisymmetric OH stretching vibrations. Each of the two vibrational lines due to the two CO vibrations of the CO-H2O 2-1 cluster is examined by comparing the expected spectral features at a 12CO/13CO ratio on a simulation with those observed experimentally. The migration of the trapped molecules (CO and H2O) in the matrix is discussed, in which the observed spectral change with the deposition temperature from 14 K to 30 K is explained.  相似文献   

9.
An investigation has been made on the adsorption and decomposition of formic acid on slightly oxidized Nb(110) surface (0/Nb atom ratio = 0.2) using high resolution electron energy loss spectroscopy (HREELS),and a corresponding surface reaction mode is given.At 140 K,formic acid of low exposure on such an Nb(110) surface decomposed to formate,which bonded on Nb in monodentate configuration,simultaneously some formate decomposed to CO,which adsorbed on the surface.Formic acid multilayers formed when the exposure was high.While the temperature was increased to above 190 K,multilayer formic acid desorbed,and the surface was covered with mon-odentate-bonded formate and CO.In the temperature range of 250-300 K,chemisorbed formate changed from monodentate configuration into bridging configuration and CO molecules disappeared.The decomposition of formate at higher temperatures led to the oxidation of Nb.The formate formed in the high exposure case was so stable that it did not decompose even the temperature wa  相似文献   

10.
The decomposition of ethene on the Pd(111) surface was studied at effective pressures in the 10(-8) to 10(-7) mbar range and at sample temperatures between 300 and 700 K, using an effusive capillary array beam doser for directional adsorption, LEED, AES, temperature programmed reaction, and TDS. In the temperature range of 350-440 K increasingly stronger dehydrogenation of the ethene molecule is observed. Whereas at 350 K an ethylidyne adlayer is still present after adsorption, already at temperatures around 440 K complete coverage of the surface by carbon is attained, while the bulk still retains the properties of pure Pd. Beyond 440 K a steady-state surface C coverage is established, which decreases with temperature and is determined by detailed balancing between the ethene gas-phase adsorption rate and the migration rate of carbon into the Pd bulk. This process gives rise to the formation of a "partially carbon-covered Pd(x)C(y) surface". Above 540 K the surface-bulk diffusion of adsorbed carbon becomes fast, and in the UHV experiment the ethene adsorption rate becomes limited by the ethene gas-phase supply. The carbon bulk migration rate and the steady-state carbon surface coverage were determined as a function of the sample temperature and the ethene flux. An activation energy of 107 kJ mol(-1) for the process of C diffusion from surface adsorption sites into the subsurface region was derived in the temperature range of 400-650 K by modeling the C surface coverage as a function of temperature on the basis of steady-state reaction kinetics, assuming a first-order process for C surface-subsurface diffusion and a second-order process for C(ads) formation by dissociative C2H4 adsorption.  相似文献   

11.
We have used in situ polarization-modulation infrared reflection absorption spectroscopy to study the adsorption/dissociation of NO on Rh(111). While these studies have not been conclusive regarding the detailed surface structures formed during adsorption, they have provided important new information on the dissociation of NO on Rh(111). At moderate pressures (< or =10(-6) Torr) and temperatures (<275 K), a transition from 3-fold hollow to atop bonding is apparent. Data indicate that this transition is not due to the migration of the 3-fold hollow NO but rather to the adsorption of gas-phase NO that is directed toward the atop position due to the presence of NO decomposition products, particularly chemisorbed atomic O species at the hollow sites. These results indicate that NO dissociation occurs at temperatures well below the temperature previously reported. Additionally, high pressure (1 Torr) NO exposure at 300 K results in only atop NO, calling into question the surface structures previously proposed at these adsorption conditions consisting of atop and 3-fold hollow sites.  相似文献   

12.
We have used density-functional theory to investigate (111), (110), (210), (211), (100), and (310) surfaces of ceria (CeO2). Compared with previous interatomic-potential-based studies, our calculations reported a slightly different relative stability ordering and significantly lower surface energies for the stoichiometric surfaces. Using a defect model, the surface stabilities were evaluated as functions of oxygen partial pressure and temperature. Our investigations were restricted to ideal surface terminations, without considering defect formation on those surfaces. We found that at 300 K, the stoichiometric (111) has the lowest free energy for a wide range of oxygen partial pressures up to 1 atm, and only at ultrahigh vacuum does the Ce-terminated (111) becomes the most stable one. The transition point for the Ce-terminated (111) surfaces moves to higher oxygen partial pressures when temperature increases. To improve the prediction of electron density of states, we used the local-density approximation plus U(J) correction method to correct the on-site Coulomb correlation and exchange interaction due to the strongly localized Ce-4f electrons. The optimal parameter combination of U = 7 eV and J = 0.7 eV was found to improve the O 2p-Ce 4f gap without much degradation of ground-state bulk properties or the O 2p-Ce 5d gap. The bulk and surface electronic structures were then analyzed based on the improved density of states.  相似文献   

13.
The Fischer-Tropsch (FT) process is the heart of many natural gas conversion processes as it enables the conversion of a mixture of CO and H(2) into valuable long-chain hydrocarbons. Here we report on the use of state-of-the-art surface science techniques to obtain information on the relationship between the surface atomic structure of model catalysts and their performance in the Fischer-Tropsch reaction. Cobalt single crystals and polycrystals were modified with non-reducible oxides as to resemble industrial catalysts. Reflection absorption infrared spectroscopy was used for examining the CO adsorption behaviour at room temperature as well as at 493 K at CO pressures spanning 10(-7) to 300 mbar on both (modified) Co single/polycrystals and an industrial catalyst. Polarization modulation was applied to cancel the CO gas phase absorption. Subsequently, they were subjected to reaction tests in the same apparatus at 1 bar and 493 K. This allowed us to close the material, pressure and instrument gap in the field of Fischer-Tropsch synthesis on cobalt-based catalysts.  相似文献   

14.
The diffusion of o-, m-, and p-xylene in a FAU zeolite at 300-900 K was investigated using molecular dynamics simulations. Calculated self-diffusion coefficients of xylene isomers showed that the mobility of p-xylene was the fastest, m-xylene the second fastest, and o-xylene the slowest in the FAU zeolite at the same temperature. The diffusion activation energy of o-xylene, m-xylene and p-xylene was, respectively, determined to be 9.04, 7.45 and 6.44 kJ mol(-1) within the temperature range of 400 to 900 K, while to be 14.12, 13.59 and 15.47 kJ mol(-1) within the temperature range of 300 to 400 K. Xylene density profiles and orientational analysis suggested that this can be attributed to the xylene molecules that diffuse in the FAU zeolite by two different mechanisms at high and low temperatures. The behavior of motion for xylene in the FAU zeolite exhibits a "fluid-like" mode at high temperatures and exhibits a "jump-like" mode at low temperatures.  相似文献   

15.
Pyridine was chemisorbed on Cu(110) at 10 K and observed using STM at 5 K as dosed and after annealing to temperatures between 20 and 300 K. At very low coverage, two molecular species with different apparent heights are observed to coexist. The higher species is assigned to a pyridine molecule bonded with its symmetry axis perpendicular to the surface plane, while the lower species is assigned to a pyridine molecule that is tilted down toward the surface plane. At low coverage, the tilted pyridine species predominates on the surface, but as the total surface coverage of pyridine increases, the molecules stand up until the upright geometry becomes favored. Measurements of the STS of the two species show different molecular resonances derived from the lowest unoccupied pyridine pi* orbitals. The tilted pyridine species has a peak in the unoccupied local density of states at 2.6 +/- 0.1 eV, whereas the upright pyridine species has a peak at 2.3 +/- 0.1 eV.  相似文献   

16.
Au/TiO2 catalysts prepared by a deposition–precipitation process and used for CO oxidation without previous calcination exhibited high, largely temperature‐independent conversions at low temperatures, with apparent activation energies of about zero. Thermal treatments, such as He at 623 K, changed the conversion–temperature characteristics to the well‐known S‐shape, with activation energies slightly below 30 kJ mol?1. Sample characterization by XAFS and electron microscopy and a low‐temperature IR study of CO adsorption and oxidation showed that CO can be oxidized by gas‐phase O2 at 90 K already over the freeze‐dried catalyst in the initial state that contained Au exclusively in the +3 oxidation state. CO conversion after activation in the feed at 303 K is due to AuIII‐containing sites at low temperatures, while Au0 dominates conversion at higher temperatures. After thermal treatments, CO conversion in the whole investigated temperature range results from sites containing exclusively Au0.  相似文献   

17.
Temperature-programmed reaction spectroscopy (TPRS) and direct, isothermal reaction-rate measurements were employed to investigate the oxidation of CO on Pt(111) covered with high concentrations of atomic oxygen. The TPRS results show that oxygen atoms chemisorbed on Pt(111) at coverages just above 0.25 ML (monolayers) are reactive toward coadsorbed CO, producing CO(2) at about 295 K. The uptake of CO on Pt(111) is found to decrease with increasing oxygen coverage beyond 0.25 ML and becomes immeasurable at a surface temperature of 100 K when Pt(111) is partially covered with Pt oxide domains at oxygen coverages above 1.5 ML. The rate of CO oxidation measured as a function of CO beam exposure to the surface exhibits a nearly linear increase toward a maximum for initial oxygen coverages between 0.25 and 0.50 ML and constant surface temperatures between 300 and 500 K. At a fixed CO incident flux, the time required to reach the maximum reaction rate increases as the initial oxygen coverage is increased to 0.50 ML. A time lag prior to the reaction-rate maximum is also observed when Pt oxide domains are present on the surface, but the reaction rate increases more slowly with CO exposure and much longer time lags are observed, indicating that the oxide phase is less reactive toward CO than are chemisorbed oxygen atoms on Pt(111). On the partially oxidized surface, the CO exposure needed to reach the rate maximum increases significantly with increases in both the initial oxygen coverage and the surface temperature. A kinetic model is developed that reproduces the qualitative dependence of the CO oxidation rate on the atomic oxygen coverage and the surface temperature. The model assumes that CO chemisorption and reaction occur only on regions of the surface covered by chemisorbed oxygen atoms and describes the CO chemisorption probability as a decreasing function of the atomic oxygen coverage in the chemisorbed phase. The model also takes into account the migration of oxygen atoms from oxide domains to domains with chemisorbed oxygen atoms. According to the model, the reaction rate initially increases with the CO exposure because the rate of CO chemisorption is enhanced as the coverage of chemisorbed oxygen atoms decreases during reaction. Longer rate delays are predicted for the partially oxidized surface because oxygen migration from the oxide phase maintains high oxygen coverages in the coexisting chemisorbed oxygen phase that hinder CO chemisorption. It is shown that the time evolution of the CO oxidation rate is determined by the relative rates of CO chemisorption and oxygen migration, R(ad) and R(m), respectively, with an increase in the relative rate of oxygen migration acting to inhibit the reaction. We find that the time lag in the reaction rate increases nearly exponentially with the initial oxygen coverage [O](i) (tot) when [O](i) (tot) exceeds a critical value, which is defined as the coverage above which R(ad)R(m) is less than unity at fixed CO incident flux and surface temperature. These results demonstrate that the kinetics for CO oxidation on oxidized Pt(111) is governed by the sensitivity of CO binding and chemisorption on the atomic oxygen coverage and the distribution of surface oxygen phases.  相似文献   

18.
Gold based model systems exhibiting the structural versatility of nanoparticle ensembles and being accessible for surface spectroscopic investigations are expected to provide new information about the adsorption of carbon monoxide, a key process influencing the CO oxidation activity of this noble metal in nanoparticulate form. Accordingly, in the present work the interaction of CO is studied with an ion bombardment modified Au(111) surface by means of a combination of photoelectron spectroscopy (XPS and UPS), sum frequency generation vibrational spectroscopy (SFG), and scanning tunneling microscopy (STM). While no adsorption was found on intact Au(111), data collected on the ion bombarded surface at cryogenic temperatures indicated the presence of stable CO adsorbates below 190 K. A quantitative evaluation of the C 1s XPS spectra and the surface morphology explored by STM revealed that the step edge sites created by ion bombardment are responsible for CO adsorption. The identification of the CO binding sites was confirmed by density functional theory (DFT) calculations. Annealing experiments up to room temperature showed that at temperatures above 190 K unstable adsorbates are formed on the surface under dynamic exposure conditions that disappeared immediately when gaseous CO was removed from the system. Spectroscopic data as well as STM records revealed that prolonged CO exposure at higher pressures of up to 1 mbar around room temperature facilitates massive atomic movements on the roughened surface, leading to its strong reordering toward the structure of the intact Au(111) surface, accompanied by the loss of the CO binding capacity.  相似文献   

19.
The catalytic CO + NO reaction to form CO2, N2, and N2O has been studied on a Pd(111) surface at pressures up to 240 mbar using in situ polarization modulation infrared reflection absorption spectroscopy (PM-IRAS). At 240 mbar, for a pressure ratio of PCO:PNO = 3:2 and under reaction conditions, besides adsorbed CO, the formation of isocyanate (-NCO) was observed. Once produced at 500-625 K, the isocyanate species was stable within the entire temperature range studied (300-625 K). On the other hand, its formation required a total CO + NO pressure of at least 0.6 mbar, illustrating the importance of in situ infrared experiments under high-pressure conditions. The significance of the isocyanate formation for the CO + NO reaction on Pd(111) is discussed.  相似文献   

20.
We present a scanning tunnel microscopy study of Co clusters grown through vapor deposition on Al(2)O(3) thin films over NiAl(100) at different coverages and temperatures. Formation of Co clusters was observed at 90, 300, 450, and 570 K. At the three lower temperatures, we find narrow cluster size distributions and the mean sizes (with a diameter of 2.6 nm and a height of 0.7 nm) do not change significantly with the coverage and temperature, until the clusters start to coalesce. Even on 3-4-nm-wide crystalline Al(2)O(3) strips where the deposited Co atoms are confined, the same features sustain. Only at 570 K the normal growth mode where the cluster size increases with the deposition coverage is observed, although the data are less conclusive. A simple modeling of kinetic surface processes on a strip confirms the normal growth mode, but fails to show a favored size unless additional energetic constraints are applied on the cluster sizes. Increasing Co coverages to cluster coalescence, a larger preferable size (mean diameter of 3.5 nm and height of 1.4 nm) appears for growth at 450 K. These two sizes are corroborated by morphology evolution of high Co coverages deposited at 300 K and annealed to 750 K, in which the coalescence is eliminated and the two preferable geometries appear and coexist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号