首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we propose a path integral influence functional from a solvent to determine a self-correlation function of a quantum particle in classical simple fluid. It is shown that the influence functional is related to a grand potential functional of the pure solvent under a three-dimensional external field arising from a classical isomorphic polymer, on which the quantum particle is mapped. The influence functional can be calculated from the self-correlation function, the solute-solvent and the solvent-solvent pair correlation function. The obtained equation of the self-correlation function is applied to an excess electron problem in fluid helium. The Fourier path-integral Monte Carlo method is employed to perform the path integral of the electron. The solute-solvent pair correlation function is estimated from a reference interaction site model integral equation. These results obtained form our proposed influence functional and from that proposed by Chandler, Singh, and Richardson are compared with those provided by a path integral Monte Carlo simulation with the explicit helium solvent.  相似文献   

2.
The Feynman path integral method is applied to the many-electron problem of quantum chemistry. We begin with constructing new closure relations in terms of the linear combination of atomic orbital (LCAO) coefficients and investigate the transition amplitude and the partition function of the system in question; then a “classical path of electrons,” which is described by the time-dependent Hartree-Fock-Roothaan equation, is obtained by minimizing the action integral of the system with respect to the “electron coordinate.” The next order approximation is obtained by evaluating the deviation from this classical path, which is approximately written by a Gaussian integral. The result is expected to be the random-phase approximation. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
Schofield's form of quantum time correlation functions is used as the starting point to derive a computable expression for these quantities. The time composition property of the propagators in complex time is exploited to approximate Schofield's function in terms of a sequence of short time classical propagations interspersed with path integrals that, combined, represent the thermal density of the system. The approximation amounts to linearization of the real time propagators and it becomes exact with increasing number of propagation legs. Within this scheme, the correlation function is interpreted as an expectation value over a probability density defined on the thermal and real path space and calculated by a Monte Carlo algorithm. The performance of the algorithm is tested on a set of benchmark problems. Although the numerical effort required is considerable, we show that the algorithm converges systematically to the exact answer with increasing number of iterations and that it is stable for times longer than those accessible via a brute force, path integral based, calculation of the correlation function. Scaling of the algorithm with dimensionality is also examined and, when the method is combined with commonly used filtering schemes, found to be comparable to that of alternative semiclassical methods.  相似文献   

4.
We propose a generalization of the intrinsic reaction coordinate (IRC) for quantum many-body systems described in terms of the mass-weighted ring polymer centroids in the imaginary-time path integral theory. This novel kind of reaction coordinate, which may be called the "centroid IRC," corresponds to the minimum free energy path connecting reactant and product states with a least amount of reversible work applied to the center of masses of the quantum nuclei, i.e., the centroids. We provide a numerical procedure to obtain the centroid IRC based on first principles by combining ab initio path integral simulation with the string method. This approach is applied to NH(3) molecule and N(2)H(5) (-) ion as well as their deuterated isotopomers to study the importance of nuclear quantum effects in the intramolecular and intermolecular proton transfer reactions. We find that, in the intramolecular proton transfer (inversion) of NH(3), the free energy barrier for the centroid variables decreases with an amount of about 20% compared to the classical one at the room temperature. In the intermolecular proton transfer of N(2)H(5) (-), the centroid IRC is largely deviated from the "classical" IRC, and the free energy barrier is reduced by the quantum effects even more drastically.  相似文献   

5.
The Gibbs ensemble Monte Carlo simulation technique was used to compare the phase equilibria of the rigid TIP4P water model [Jorgensen et al., J. Chem. Phys. 79, 926 (1983)] utilizing classical and quantum statistical mechanics. The quantum statistical mechanical treatment generally resulted in lower liquid densities and higher vapor densities, narrowing the phase envelope. As a result, the calculated critical temperatures and normal boiling points were lower from the quantum simulations than the classical by 22 and 17 K, respectively, but the critical densities were equal within the estimated uncertainties. When the phase diagram from the quantum statistical mechanical treatment was increased by 22 K, it agreed with the classical results quite well throughout the entire simulated temperature range. A semiclassical treatment, involving a low order expansion in Planck's constant, resulted in good agreement with the path integral results for second virial coefficients, but gave densities and vapor pressures that fluctuated between the values for the classical and quantum statistical mechanics values, with no definite agreement with either.  相似文献   

6.
A hybrid quantum/classical path integral Monte Carlo (QC-PIMC) method for calculating the quantum free energy barrier for hydrogen transfer reactions in condensed phases is presented. In this approach, the classical potential of mean force along a collective reaction coordinate is calculated using umbrella sampling techniques in conjunction with molecular dynamics trajectories propagated according to a mapping potential. The quantum contribution is determined for each configuration along the classical trajectory with path integral Monte Carlo calculations in which the beads move according to an effective mapping potential. This type of path integral calculation does not utilize the centroid constraint and can lead to more efficient sampling of the relevant region of conformational space than free-particle path integral sampling. The QC-PIMC method is computationally practical for large systems because the path integral sampling for the quantum nuclei is performed separately from the classical molecular dynamics sampling of the entire system. The utility of the QC-PIMC method is illustrated by an application to hydride transfer in the enzyme dihydrofolate reductase. A comparison of this method to the quantized classical path and grid-based methods for this system is presented.  相似文献   

7.
When relative degrees of freedom are taken to traverse a fixed trajectory R(τ), the properties of Feynman path integrals are used to derive a series expansion of the logarithm of the internal state elastic scattering amplitude in terms of the internal relative coupling potential. Likewise transition amplitudes for inelastic scattering are expressed in terms of an exponential of an infinite series of 2 x 2 matrices. These results represent a reordering of the usual perturbation series of time dependent quantum mechanics to obtain a series expansion in the exponential as well as truncation from the space of all channels to that of only one or two (or more, if necessary). When the relative degrees of freedom are to be treated quantum mechanically, R(τ) is now the integration variable in a Feynman path integral. The above noted exponentiated series then correspond to the exact optical potentials for elastic and inelastic scattering within the Feynman path integral formulation of quantum mechanics.  相似文献   

8.
We generalize the linearized path integral approach to evaluate quantum time correlation functions for systems best described by a set of nuclear and electronic degrees of freedom, restricting ourselves to the adiabatic approximation. If the operators in the correlation function are nondiagonal in the electronic states, then this adiabatic linearized path integral approximation for the thermal averaged quantum dynamics presents interesting and distinctive features, which we derive and explore in this paper. The capability of these approximations to accurately reproduce the behavior of physical systems is demonstrated by calculating the diffusion constant for an excess electron in a metal-molten salt solution.  相似文献   

9.
We propose an approximate method for calculating Kubo-transformed real-time correlation functions involving position-dependent operators, based on path integral (Parrinello-Rahman) molecular dynamics. The method gives the exact quantum mechanical correlation function at time zero, exactly satisfies the quantum mechanical detailed balance condition, and for correlation functions of the form C(Ax)(t) and C(xB)(t) it gives the exact result for a harmonic potential. It also works reasonably well at short times for more general potentials and correlation functions, as we illustrate with some example calculations. The method provides a consistent improvement over purely classical molecular dynamics that is most apparent in the low-temperature regime.  相似文献   

10.
The Feynman path integral method is applied to the many-electron problem. We first give new closure relations in terms of ordinary complex and real numbers, which could be derived from an arbitrary complete set of state vectors. Then, in the path integral form, the partition function of the system and the ensemble average of energy are explicitly expressed in terms of these closure relations. It is impossible to evaluate the path integral by direct numerical integrations because of its huge amount of integration variables. Therefore, we develop an algorithm by the Monte Carlo method with constraints corresponding to the normalization condition of states to calculate the required integral. Finally, the ensemble average of energy for the hydrogen molecule is explicitly evaluated by the quantum Monte Carlo method and results are compared with the result obtained by the ordinary full configuration interaction (CI) method. © 1996 John Wiley & Sons, Inc.  相似文献   

11.
A recently formulated continuum limit semiclassical initial value series representation (SCIVR) of the quantum dynamics of dissipative systems is applied to the study of vibrational relaxation of model harmonic and anharmonic oscillator systems. As is well known, the classical dynamics of dissipative systems may be described in terms of a generalized Langevin equation. The continuum limit SCIVR uses the Langevin trajectories as input, albeit with a quantum noise rather than a classical noise. Combining this development with the forward-backward form of the prefactor-free propagator leads to a tractable scheme for computing quantum thermal correlation functions. Here we present the first implementation of this continuum limit SCIVR series method to study two model problems of vibrational relaxation. Simulations of the dissipative harmonic oscillator system over a wide range of parameters demonstrate that at most only the first two terms in the SCIVR series are needed for convergence of the correlation function. The methodology is then applied to the vibrational relaxation of a dissipative Morse oscillator. Here, too, the SCIVR series converges rapidly as the first two terms are sufficient to provide the quantum mechanical relaxation with an estimated accuracy on the order of a few percent. The results in this case are compared with computations obtained using the classical Wigner approximation for the relaxation dynamics.  相似文献   

12.
Higher order factorization schemes are developed for path integral molecular dynamics in order to improve the convergence of estimators for physical observables as a function of the Trotter number. The methods are based on the Takahashi-Imada and Susuki decompositions of the Boltzmann operator. The methods introduced improve the averages of the estimators by using the classical forces needed to carry out the dynamics to construct a posteriori weighting factors for standard path integral molecular dynamics. The new approaches are straightforward to implement in existing path integral codes and carry no significant overhead. The Suzuki higher order factorization was also used to improve the end-to-end distance estimator in open path integral molecular dynamics. The new schemes are tested in various model systems, including an ab initio path integral molecular dynamics calculation on the hydrogen molecule and a quantum water model. The proposed algorithms have potential utility for reducing the cost of path integral molecular dynamics calculations of bulk systems.  相似文献   

13.
We applied the quantum path integral Monte Carlo method for the study of (para-H)N (N = 5-33) clusters at T = 2 K, exploring static and dynamic order, which originates from the effects of zero-point energy, kinetic energy, and thermal fluctuations in quantum clusters. Information on dynamic structure was inferred from the asymptotic tails of the cage correlation function calculated from the centroid Monte Carlo trajectory. The centroid cage correlation function decays to zero for large clusters (N = 15-33), manifesting the interchange of molecules between different solvation shells, with statistically diminishing back interchange. Further evidence for the floppiness of para-hydrogen clusters emerges from the Monte Carlo evolution of the centroid of a tagged molecule, which exhibits significant changes in the list of its first and second solvation shells due to the interchange of molecules between these shells.  相似文献   

14.
《Chemical physics letters》1987,140(4):406-410
The classical and quantum-mechanical free energies of crystalline (fcc) argon were determined at two state points by classical and path integral Monte Carlo methods. The quantum corrections to the free energy, energy and pressure so obtained are compared with corrections based on the harmonic approximation and the first-order term in the Wigner-Kirkwood expansion.  相似文献   

15.
16.
The recently proposed mixed quantum-classical method is extended to applications at finite temperatures. The method is designed to treat complex systems consisting of a low-dimensional quantum part (the primary system) coupled to a dissipative bath described classically. The method is based on a formalism showing how to systematically correct the approximate zeroth-order evolution rule. The corrections are defined in terms of the total quantum Hamiltonian and are taken to the classical limit by introducing the frozen Gaussian approximation for the bath degrees of freedom. The evolution of the primary system is governed by the corrected propagator yielding the exact quantum dynamics. The method has been tested on a standard model system describing proton transfer in a condensed-phase environment: a symmetric double-well potential bilinearly coupled to a bath of harmonic oscillators. Flux correlation functions and thermal rate constants have been calculated at two different temperatures for a range of coupling strengths. The results have been compared to the fully quantum simulations of Topaler and Makri [J. Chem. Phys. 101, 7500 (1994)] with the real path integral method.  相似文献   

17.
The Feynman path integral method is applied to the many-electron problem of quantum chemistry. We begin with investigating the partition function of the system in question; then, “a classical path of electron” that corresponds to the Hartree–Fock approximation is obtained by minimizing the thermodynamic potential of the system with respect to the electron coordinate. The next-order approximation is obtained by evaluating the deviation from this classical path, which is approximately written by an easily integrable Gaussian integral. The result is expected to be the random-phase approximation. As numerical examples, the hydrogen molecule and butadiene are treated. © 1994 John Wiley & Sons, Inc.  相似文献   

18.
In this paper, we consider a dissipative system in which the system is coupled linearly to a harmonic bath. In the continuum limit, the bath is defined via a spectral density and the classical system dynamics is given in terms of a generalized Langevin equation. Using the path integral formulation and factorized initial conditions, it is well known that one can integrate out the harmonic bath, leaving only a path integral over the system degrees of freedom. However, the semiclassical initial value representation treatment of dissipative systems has usually been limited to a discretized treatment of the bath in terms of a finite number of bath oscillators. In this paper, the continuum limit of the semiclassical initial value representation is derived for dissipative systems. As in the path integral, the action is modified with an added nonlocal term, which expresses the influence of the bath on the dynamics. The first order correction term to the semiclassical initial value approximation is also derived in the continuum limit.  相似文献   

19.
The quantum instanton approximation is used to compute kinetic isotope effects for intramolecular hydrogen transfer in cis-1,3-pentadiene. Due to the importance of skeleton motions, this system with 13 atoms is a simple prototype for hydrogen transfer in enzymatic reactions. The calculation is carried out using thermodynamic integration with respect to the mass of the isotopes and a path integral Monte Carlo evaluation of relevant thermodynamic quantities. Efficient "virial" estimators are derived for the logarithmic derivatives of the partition function and the delta-delta correlation functions. These estimators require significantly fewer Monte Carlo samples since their statistical error does not increase with the number of discrete time slices in the path integral. The calculation treats all 39 degrees of freedom quantum mechanically and uses an empirical valence bond potential based on a molecular mechanics force field.  相似文献   

20.
An interacting spin system is investigated within the scenario of the Feynman path integral representation of quantum mechanics. Short‐time propagator algorithms and a discrete time formalism are used in combination with a basis set involving Grassmann variables coherent states to get a many‐body analytic propagator. The generating function thus obtained leads, after an adequate tracing over Grassmann variables in the imaginary time domain, to the partition function. A spin 1/2 Hamiltonian involving the whole set of interactions is considered. Fermion operators satisfying the standard anticommutation relations are constructed from the raising and lowering spin operators via the Jordan–Wigner transformation. The partition function obtained is more general than the partition function of the traditional Ising model involving only first‐neighbor interactions. Computations were performed assuming that the coupling as a function of the distance can be reasonably well represented by an Airy function. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号