首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Schofield's form of quantum time correlation functions is used as the starting point to derive a computable expression for these quantities. The time composition property of the propagators in complex time is exploited to approximate Schofield's function in terms of a sequence of short time classical propagations interspersed with path integrals that, combined, represent the thermal density of the system. The approximation amounts to linearization of the real time propagators and it becomes exact with increasing number of propagation legs. Within this scheme, the correlation function is interpreted as an expectation value over a probability density defined on the thermal and real path space and calculated by a Monte Carlo algorithm. The performance of the algorithm is tested on a set of benchmark problems. Although the numerical effort required is considerable, we show that the algorithm converges systematically to the exact answer with increasing number of iterations and that it is stable for times longer than those accessible via a brute force, path integral based, calculation of the correlation function. Scaling of the algorithm with dimensionality is also examined and, when the method is combined with commonly used filtering schemes, found to be comparable to that of alternative semiclassical methods.  相似文献   

2.
The Feynman path integral method is applied to the many-electron problem of quantum chemistry. We begin with investigating the partition function of the system in question; then, “a classical path of electron” that corresponds to the Hartree–Fock approximation is obtained by minimizing the thermodynamic potential of the system with respect to the electron coordinate. The next-order approximation is obtained by evaluating the deviation from this classical path, which is approximately written by an easily integrable Gaussian integral. The result is expected to be the random-phase approximation. As numerical examples, the hydrogen molecule and butadiene are treated. © 1994 John Wiley & Sons, Inc.  相似文献   

3.
We apply the effective potential analytic continuation (EPAC) method to one-dimensional asymmetric potential systems to obtain the real time quantum correlation functions at various temperatures. Comparing the EPAC results with the exact results, we find that for an asymmetric anharmonic oscillator the EPAC results are in very good agreement with the exact ones at low temperature, while this agreement becomes worse as the temperature increases. We also show that the EPAC calculation for a certain type of asymmetric potentials can be reduced to that for the corresponding symmetric potentials.  相似文献   

4.
A computational procedure for generating space-symmetry-adapted Bloch functions (BF) is presented. The case is discussed when BF are built from a basis of local functions (atomic orbitals [AOs]). The method, which is completely general in the sense that it applies to any space group and AOs of any quantum number, is based on the diagonalization of Dirac characters. For its implementation, it does not require as an input character tables or related data, since this information is automatically generated starting from the space group symbol and the AO basis set. Formal aspects of the method, not available in textbooks, are discussed. © 1998 John Wiley & Sons, Inc. Int J Quant Chem 67: 299–309, 1998  相似文献   

5.
The two-site-hopping problem is studied in the time domain. The relaxation can be described as a product of two time correlation functions. One describes the time evolution for the average over the two sites, while the other accounts for the difference of the two sites. The latter exhibits an anomalous slow decay at long times and does not decay for fast hopping rates. The first does not depend on the hopping rate at all. The results are applied to the spin dynamics of novel pairwise-connected molecules carrying an unpaired electron spin.  相似文献   

6.
We generalize the linearized path integral approach to evaluate quantum time correlation functions for systems best described by a set of nuclear and electronic degrees of freedom, restricting ourselves to the adiabatic approximation. If the operators in the correlation function are nondiagonal in the electronic states, then this adiabatic linearized path integral approximation for the thermal averaged quantum dynamics presents interesting and distinctive features, which we derive and explore in this paper. The capability of these approximations to accurately reproduce the behavior of physical systems is demonstrated by calculating the diffusion constant for an excess electron in a metal-molten salt solution.  相似文献   

7.
A method constructing symmetry-adapted bonded Young tableau bases is proposed, based on the symmetry properties of bonded tableaus and the projection operator associated with a point group. Several examples including the ground states and π excited states of O3, O3, O3+, and C3 are shown for instruction to construct the symmetrized valence bond (VB) wave function. Excitation energies of transitions from the ground states to π excited states of O3, C3H5, and C3 are calculated with an optimized symmetrized valence bond wave function in the σ–π separation approximation. Good agreement between the VB and experimental excitation energies is observed. The bonding features of the ground state and the first π excited singlet and triplet states for S3 are discussed according to bonding populations from VB calculations. Both the singlet-biradical and the dipole structures have significant contributions to the ground state X 1A1 of S3, while the excited state 1 1B2 is essentially composed of the dipole structures, and the 1 3B2 excited state is comprised from a triplet-biradical structure. © 1998 John Wiley & Sons, Inc. Int J Quant Chem 66 : 1–7, 1998  相似文献   

8.
In a previous paper [J. Theo. Comput. Chem. 2, 65 (2003)], one of the authors (B.P.) presented a method for solving the multidimensional Schrodinger equation, using modified Wilson-Daubechies wavelets, and a simple phase space truncation scheme. Unprecedented numerical efficiency was achieved, enabling a ten-dimensional calculation of nearly 600 eigenvalues to be performed using direct matrix diagonalization techniques. In a second paper [J. Chem. Phys. 121, 1690 (2004)], and in this paper, we extend and elaborate upon the previous work in several important ways. The second paper focuses on construction and optimization of the wavelength functions, from theoretical and numerical viewpoints, and also examines their localization. This paper deals with their use in representations and eigenproblem calculations, which are extended to 15-dimensional systems. Even higher dimensionalities are possible using more sophisticated linear algebra techniques. This approach is ideally suited to rovibrational spectroscopy applications, but can be used in any context where differential equations are involved.  相似文献   

9.
In this paper, we present a path integral hybrid Monte Carlo (PIHMC) method for rotating molecules in quantum fluids. This is an extension of our PIHMC for correlated Bose fluids [S. Miura and J. Tanaka, J. Chem. Phys. 120, 2160 (2004)] to handle the molecular rotation quantum mechanically. A novel technique referred to be an effective potential of quantum rotation is introduced to incorporate the rotational degree of freedom in the path integral molecular dynamics or hybrid Monte Carlo algorithm. For a permutation move to satisfy Bose statistics, we devise a multilevel Metropolis method combined with a configurational-bias technique for efficiently sampling the permutation and the associated atomic coordinates. Then, we have applied the PIHMC to a helium-4 cluster doped with a carbonyl sulfide molecule. The effects of the quantum rotation on the solvation structure and energetics were examined. Translational and rotational fluctuations of the dopant in the superfluid cluster were also analyzed.  相似文献   

10.
Fragment molecular orbital (FMO) method gives a powerful tool to investigate electronic structures for biological substances, and ABINIT-MP program has been developed to implement ab initio FMO calculations effectively. We introduced DFT code into ABINIT-MP and applied fragment-DFT (F-DFT) calculations to model polypeptides. The total accuracy of numerical integrations employed in those calculations was examined by the total numbers of electrons in the molecules. It is shown that the numerical integral of the total density function under the fragment approximation works as an indicator for the numerically total accuracy on the F-DFT implementation.  相似文献   

11.
We present and analyze a general method to calculate time correlation functions from molecular dynamics on scaled potentials for complex systems for which simulation is affected by broken ergodicity. Depending on the value of the scaling factor, correlations can be calculated for times that can be orders of magnitude longer than those accessible to direct simulations. We show that the exact value of the time correlation functions of the original system (i.e., with unscaled potential) can be obtained, in principle, using an action-reweighting scheme based on a stochastic path-integral formalism. Two tests (involving a bistable potential model and a dipeptide bond-vector orientational relaxation) are exemplified to showcase the strengths, as well as the limitations of the approach, and a procedure for the estimation of the time-dependent standard deviation error is outlined.  相似文献   

12.
13.
Forward-backward trajectory formulations of time correlation functions are reviewed. Combination of the forward and reverse time evolution operators within the time-dependent semiclassical approximation minimizes phase cancellation, giving rise to an efficient methodology for simulating the dynamics of low-temperature fluids. A quantum mechanical version of the forward-backward formulation, based on the hydrodynamic formulation of time-dependent quantum mechanics, is also available but is practical only for small systems.  相似文献   

14.
In this work it is shown that because of the different symmetry of the variables the time dependence of the auto-correlation function of the time derivative of the anisotropic polarizability density can be different from that of the molecular angular momentum density auto-correlation function. Thus the information on this angular momentum correlation function that can be deduced from that of the time derivative of the anisotropic polarizability density can be limited.  相似文献   

15.
We present an ℒ︁2 method aimed at directly computing autocorrelation functions 〈Φ0t〉 for systems displaying long time recurrences. By making use of a Lanczos scheme, as previously proposed by Wyatt [Chem. Phys. Lett. 121, 301 (1985)], the method avoids explicit time propagation of the wavefunction. The problem associated with spurious recurrences, due to the finite size of the ℒ︁2-box, is solved in terms of an optical potential located in the asymptotic region. The resulting complex representation of the Hamiltonian operator is handled by a complex symmetric Lanczos scheme, which retains the same basic advantages as its real version. The method is illustrated on the ozone photodissociation process which displays a very detailed recurrence structure over a long time period. It is shown that such a direct calculation of the correlation function is about one order of magnitude faster than an actual wavepacket propagation. The accuracy of the method is assessed by comparison to calculations performed without any optical potential but using a very large box size along the dissociation coordinate. © 1998 John Wiley & Sons, Inc. Int J Quant Chem 68: 317–328, 1998  相似文献   

16.
Self-consistent field calculations are done using two-body density functionals for the correlation energy. The corresponding functional derivatives are obtained and used in pseudo-eigenvalue equations analogous to the Kohn–Sham ones. The examples studied include atomic systems from He to Ar. The values obtained for ionization potentials, electron affinities, dipole polarizabilities, and virial ratios from these calculations are given, and the effect of exchange is addressed. The results obtained are in good agreement with experimental values, and are of the same quality as those given by accurate exchange-correlation functionals. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 1887–1898, 1998  相似文献   

17.
For coherent Raman spectroscopies, common femtosecond pulses often lie in an intermediate regime: their bandwidth is too wide for measurements in the frequency domain, but their temporal width is too broad for homodyne measurements in the time domain. A recent paper [S. Nath et al., Phys. Rev. Lett. 97, 267401 (2006)] showed that complete Raman spectra can be recovered from intermediate length pulses by using simultaneous time and frequency detection (TFD). Heterodyne detection and a phase-stable local oscillator at the anti-Stokes frequency are not needed with TFD. This paper examines the theory of TFD Raman in more detail; a companion paper tests the results on experimental data. Model calculations illustrate how information on the Raman spectrum is transferred from the frequency domain to the time domain as the pulse width shortens. When data are collected in both dimensions, the Raman spectrum is completely determined to high resolution, regardless of the probe pulse width. The loss of resolution in many femtosecond coherent Raman experiments is due to the restriction to one-dimensional data collection, rather than due to a fundamental restriction based on the pulse width.  相似文献   

18.
A method to evaluate nonlinear centroid correlation functions is presented that is amenable to simple numerical computation. It can be implemented with the centroid molecular dynamics method for approximate quantum dynamics with no additional assumptions. Two nonlinear correlation functions are evaluated for a model potential using this scheme and compared with results from exact quantum calculations.  相似文献   

19.
Vibrational energy relaxation of a diatomic solute in a liquid solvent is investigated by means of the generalized Langevin equation. The vibrational energy, velocity and capacity time correlation functions (TCFs) are considered. It is shown that the detailed structure of the energy TCF contains an initial fast (subpicosecond) decay segment that is followed by weak oscillations on the background of an exponential relaxation curve. The direct method for evaluating the relaxation rate constant from equilibrium molecular dynamics simulations of a flexible solute is proposed and implemented. The closed form expressions for the memory function and for the relaxation rate constant in terms of quantities accessible from the simulations are derived. The simulation results for rigid and flexible solutes are compared and analyzed.  相似文献   

20.
The calculation of single-particle time correlation functions using the Bose-Einstein centroid dynamics formalism is discussed. A new definition of the quasidensity operator is used to calculate the centroid force on a given particle for an anharmonic system. The force includes correlation effects due to quantum statistics and is used for the calculation of the classical-like dynamics of phase-space centroid variables within the centroid molecular dynamics approximation. Time correlation functions are then obtained for single-particle quantities. These correspond to the double-Kubo transform of exact quantum-mechanical correlation functions. The centroid dynamics results are compared to those of exact basis-set calculations and a good agreement is found. The level of accuracy is in fact the same as what was observed earlier for the calculation of center-of-mass correlation functions for Fermi-Dirac and Bose-Einstein statistics, and for any correlation function for Boltzmann statistics. These results show that it is now possible to use Bose-Einstein centroid molecular dynamics to calculate single-particle correlation functions for systems where quantum exchange effects are present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号