首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
The equilibrium structure and potential energy surface of calcium dichloride (CaCl2) have been determined from accurate ab initio calculations using the coupled-cluster method, CCSD(T), in conjunction with basis sets of quadruple- and quintuple-zeta quality. The CaCl2 molecule was found to be linear at equilibrium. The vibration-rotation energy levels of various CaCl2 isotopomers were predicted by the variational method. The calculated spectroscopic constants could be used to guide future high-resolution spectroscopic experiments on calcium dichloride.  相似文献   

2.
The equilibrium structure and potential energy surface of beryllium dihydride BeH(2) in its ground electronic state have been determined from highly accurate ab initio calculations. The vibration-rotation energy levels of three isotopomers BeH(2), BeD(2), and BeHD were predicted using the variational method. The calculated spectroscopic constants are in remarkably good agreement with the existing experimental data (sub-cm(-1) accuracy) and should be useful in a further analysis of high-resolution vibration-rotation spectra of all three isotopomers.  相似文献   

3.
The equilibrium structures and potential energy surfaces of the Li2OH radical and the Li2OH+ cation in their ground electronic states have been determined from accurate ab initio calculations. The vibration-rotation energy levels and spectroscopic constants of three isotopic species (Li2OH, Li2OD, 6Li2OH) were calculated by a perturbational approach. The predicted spectroscopic constants may serve as a useful guide for detecting these species by vibration-rotation spectroscopy and for assigning their spectra.  相似文献   

4.
The accurate ground-state potential energy function of aluminum monohydride (AlH) has been determined from ab initio calculations using the multireference averaged coupled-pair functional (MR-ACPF) method in conjunction with the correlation-consistent core-valence basis sets up to septuple-zeta quality. The vibration-rotation energy levels of the two isotopologues, AlH and AlD, were predicted to near the “spectroscopic” accuracy. The importance of electron correlation beyond the MR-ACPF level of approximation, the scalar relativistic, spin-orbit, adiabatic, and nonadiabatic effects was discussed. © 2019 Wiley Periodicals, Inc.  相似文献   

5.
The accurate ground-state potential energy function of beryllium monohydride, BeH, has been determined from large-scale ab initio calculations using the multi-reference averaged coupled-pair functional (MR-ACPF) method in conjunction with the correlation-consistent core-valence basis sets up to septuple-zeta quality. The effects of electron correlation beyond the MR-ACPF level of approximation were taken into account. The scalar relativistic and adiabatic (the diagonal correction) effects, as well as some of the nonadiabatic effects, were also discussed. The vibration-rotation energy levels of three isotopologues, BeH, BeD, and BeT, were predicted to sub-cm(-1) accuracy.  相似文献   

6.
The global minimum on the Si(2)CH(2) electronic singlet potential energy surface has been theoretically predicted to be a peculiar hydrogen bridged (Si···H···Si) disilacyclopropenylidene structure (Si(2)CH(2)). An accurate quartic force field for Si(2)CH(2) has been determined employing ab initio coupled-cluster theory with single and double excitations and a perturbative treatment for triple excitations [CCSD(T)], in combination with the correlation consistent core-valence quadruple zeta (cc-pCVQZ) basis set. The vibration-rotation coupling constants, equilibrium and zero-point vibration corrected rotational constants, centrifugal distortion constants, and harmonic and fundamental vibrational frequencies for six isotopologues of Si(2)CH(2) are predicted using vibrational second-order perturbation theory (VPT2). The anharmonic corrections for the vibrational motions involving the H bridged bonds are found to be more than 5% with respect to the corresponding harmonic vibrational frequencies. In this light, an experimental detection and characterization of disilacyclopropenylidene (Si(2)CH(2)) is highly desired.  相似文献   

7.
High resolution Fourier transform infrared emission spectra of MgH and MgD have been recorded. The molecules were generated in an emission source that combines an electrical discharge with a high temperature furnace. Several vibration-rotation bands were observed for all six isotopomers in the X (2)Sigma(+) ground electronic state: v=1-->0 to 4-->3 for (24)MgH, v=1-->0 to 3-->2 for (25)MgH and (26)MgH, v=1-->0 to 5-->4 for (24)MgD, v=1-->0 to 4-->3 for (25)MgD and (26)MgD. The new data were combined with the previous ground state data, obtained from diode laser vibration-rotation measurements and pure rotation spectra, and spectroscopic constants were determined for the v=0 to 4 levels of (24)MgH and the v=0 to 5 levels of (24)MgD. In addition, Dunham constants and Born-Oppenheimer breakdown correction parameters were obtained in a combined fit of the six isotopomers. The equilibrium vibrational constants (omega(e)) for (24)MgH and (24)MgD were found to be 1492.776(7) cm(-1) and 1077.298(5) cm(-1), respectively, while the equilibrium rotational constants (B(e)) are 5.825 523(8) cm(-1) and 3.034 344(4) cm(-1). The associated equilibrium bond distances (r(e)) were determined to be 1.729 721(1) A for (24)MgH and 1.729 157(1) A for (24)MgD.  相似文献   

8.
On the basis of (R)CCSD(T) calculations with the cc-pVQZ basis set, accurate equilibrium bond lengths (ca. 0.0005 A accuracy) are established for linear carbon chains of type SiCnO with n = 3-8. SiC and CO equilibrium bond lengths are in the range 1.683-1.735 and 1.165-1.167 A, respectively. A narrow range (1.272-1.287 A) is obtained for all 25 carbon-carbon equilibrium distances. The equilibrium dipole moments (mu(e)) exhibit large correlation effects. The mu(e) values for the closed-shell species with even integer n are larger than those for the triplet ground states of SiCnO chains with odd n values. Various spectroscopic constants such as harmonic vibrational wavenumbers, vibration-rotation coupling, and l-type doubling constants are calculated. The ground-state rotational constants of SiC3O, SiC4O, and SiC5O are predicted with ca. 0.1% accuracy to be 1386.5, 867.0, and 564.4 MHz.  相似文献   

9.
New high-resolution visible emission spectra of the MgH molecule have been recorded with high signal-to-noise ratios using a Fourier transform spectrometer. Many bands of the A 2Pi-->X 2Sigma+ and B' 2Sigma+-->X 2Sigma+ electronic transitions of 24MgH were analyzed; the new data span the v' = 0-3 levels of the A 2Pi and B'2Sigma+ excited states and the v'=0-11 levels of the X 2Sigma+ ground electronic state. The vibration-rotation energy levels of the perturbed A 2Pi and B' 2Sigma+ states were fitted as individual term values, while those of the X 2Sigma+ ground state were fitted using the direct-potential-fit approach. A new analytic potential energy function that imposes the theoretically correct attractive potential at long-range, and a radial Hamiltonian that includes the spin-rotation interaction were employed, and a significantly improved value for the ground state dissociation energy of MgH was obtained. The v'=11 level of the X 2Sigma+ ground electronic state was found to be the highest bound vibrational level of 24MgH, lying only about 13 cm(-1) below the dissociation asymptote. The equilibrium dissociation energy for the X 2Sigma+ ground state of 24MgH has been determined to be De=11104.7+/-0.5 cm(-1) (1.37681+/-0.00006 eV), whereas the zero-point energy (v'=0) is 739.11+/-0.01 cm(-1). The zero-point dissociation energy is therefore D0=10365.6+/-0.5 cm(-1) (1.28517+/-0.00006 eV). The uncertainty in the new experimental dissociation energy of MgH is more than 2 orders of magnitude smaller than that for the best value available in the literature. MgH is now the only hydride molecule other than H2 itself for which all bound vibrational levels of the ground electronic state are observed experimentally and for which the dissociation energy is determined with subwavenumber accuracy.  相似文献   

10.
A rovibrational model based on the normal-mode complete nuclear Hamiltonian is applied to methane using our recent potential energy surface [A. V. Nikitin, M. Rey, and Vl. G. Tyuterev, Chem. Phys. Lett. 501, 179 (2011)]. The kinetic energy operator and the potential energy function are expanded in power series to which a new truncation-reduction technique is applied. The vibration-rotation Hamiltonian is transformed systematically to a full symmetrized form using irreducible tensor operators. Each term of the Hamiltonian expansion can be thus cast in the tensor form whatever the order of the development. This allows to take full advantage of the symmetry properties for doubly and triply degenerate vibrations and vibration-rotation states. We apply this model to variational computations of energy levels for (12)CH(4), (13)CH(4), and (12)CD(4).  相似文献   

11.
The equilibrium structure and potential energy surface of calcium dihydride, CaH(2), have been determined from large-scale ab initio calculations using the coupled-cluster method, CCSD(T), in conjunction with basis sets of quadruple- and quintuple-zeta quality. The CaH(2) molecule was found to be quasilinear. The HCaH bending potential function was predicted to be extraordinarily flat near the minimum, located at the HCaH angle of 164 degrees. The barrier to linearity was calculated to be just 6 cm(-1). The vibrational-rotational energy levels of various isotopomers were predicted using the variational method. The calculated vibrational fundamental frequencies are in good agreement with the results of matrix-isolation studies, and the other predicted spectroscopic constants can assist in the future detection of calcium dihydride in the gas phase.  相似文献   

12.
运用包含Davidson修正的多参考组态相互作用(MRCI+Q)方法结合6-311++G(3df,3pd)基组计算了NaC分子基态(X4∑)以及三个低电子激发态(a2Π, b2∑, A4Π)的势能曲线(PECs), 确定出相应态的平衡键长Re和垂直激发能Te. 然后将PECs拟合到Murrel-Sorbie(MS)解析势能函数形式, 继而获得各态的光谱数据: 谐振频率ωe、离解能De、非谐性常数ωeΧe、转动常数Be、Drot和振转耦合常数αe. 计算结果表明: X4∑、a2Π、b2∑是三个束缚电子态. 基态X4∑的平衡键长为0.2259 nm, 谐振频率为431 cm-1, 离解能为1.92 eV, 目前计算值与实验结果和其它理论值一致. a2Π和b2∑激发态的核间距、谐振频率分别为0.2447、0.2369 nm 和329、335 cm-1, Te分别为1.58 和1.75eV, De则为0.71和0.42 eV. A4Π态为排斥态, 其相对基态的垂直激发能为2.48 eV. 通过求解核运动的薛定谔方程找到了转动量子数J=0时NaC分子三个低电子态(X4∑, a2Π, b2∑)的全部振动能级和转动惯量.  相似文献   

13.
Equilibrium structures for the cis and trans isomer of 1-chloro-2-fluoroethylene are reported. The structures are obtained within a least-squares fit procedure using the available experimental ground-state rotational constants for various isotopic species of both forms. Vibrational effects were eliminated before the analysis using vibration-rotation interaction constants derived from computed quadratic and cubic force fields with the required quantum chemical calculations carried out using second-order Moller-Plesset perturbation as well as coupled-cluster (CC) theory. The semiexperimental or empirical equilibrium geometries obtained in this way agree well with the corresponding theoretical predictions obtained from CC calculations [at the CCSD(T) level] after extrapolation to the complete basis-set limit and inclusion of core-valence correlation corrections. The present results allow a detailed analysis of the geometrical differences between the two forms of 1-chloro-2-fluoroethylene. They are also compared to the structural data available for other halogenated ethylenes.  相似文献   

14.
以水性聚氨酯分散液为种子采用无皂乳液聚合新技术合成出了具有核壳结构的聚氨酯 聚苯乙烯(PU PSt)型复合聚合物乳液 .采用界面张力简化计算方法 ,通过界面自由能变化最小的热力学判据对合成的复合乳液粒子的热力学平衡形态进行了预测 .并利用透射电子显微镜和接触角法测定的膜的表面极性对其进行了证实 .结果表明 ,界面自由能变化的最小判据可以推广到PU PSt体系 ,文中给出的界面张力的简化计算方法是可行的 .  相似文献   

15.
The equilibrium structures and harmonic vibrational frequencies of peroxynitric acid (HOONO(2)) and seven structures of protonated peroxynitric acid, along with peroxynitrous acid (HOONO) and its 12 protonated peroxynitrous acid structures, have been investigated using several ab initio and density functional methods. The ab initio methods include second-order Moller-Plesset perturbation theory, quadratic configuration interaction, including single and double excitations theory (QCISD), and the QCISD(T) methods, which incorporate a perturbational estimate of the effects of connected triple excitation. The Becke three-parameter hybrid functional combined with Lee, Yang, and Parr correlation function is the density functional method used. The lowest energy form of protonated peroxynitric acid is a complex between H(2)O(2) and NO(+) rather than between H(2)O and NO(2) (+). For peroxynitrous acid, a complex between H(2)O(2) and NO(2) (+) is found to be the lowest energy structure. The ab initio proton affinity (PA) of HOONO and HOONO(2) is predicted to be 182.1 and 175.1 kcal mol(-1), respectively, at the QCISD(T)/6-311++G(3df,3pd) level of theory. The results are contrasted with an earlier study on nitrous acid, and is shown that peroxynitric acid and peroxynitrous acid have a smaller PA than nitrous acid.  相似文献   

16.
The vibration-rotation energy level spacings of homo- and heteronuclear rare gas dimers are calculated for some more common analytical intermolecular potential energy functions in a unified way by employing the discrete variable representation (DVR) method.  相似文献   

17.
Local correlation methods rely on the assumption that electron correlation is nearsighted. In this work, we develop a method to alleviate this assumption. This new method is demonstrated by calculating the random phase approximation (RPA) correlation energies in several one-dimensional model systems. In this new method, the first step is to approximately decompose the RPA correlation energy to the nearsighted and farsighted components based on the wavelength decomposition of electron correlation developed by Langreth and Perdew. The short-wavelength (SW) component of the RPA correlation energy is then considered to be nearsighted, and the long-wavelength (LW) component of the RPA correlation energy is considered to be farsighted. The SW RPA correlation energy is calculated using a recently developed local correlation method: the embedded cluster density approximation (ECDA). The LW RPA correlation energy is calculated globally based on the system's Kohn-Sham orbitals. This new method is termed λ-ECDA, where λ indicates the wavelength decomposition. The performance of λ-ECDA is examined on a one-dimensional model system: a H24 chain, in which the RPA correlation energy is highly nonlocal. In this model system, a softened Coulomb interaction is used to describe the electron-electron and electron-ion interactions, and slightly stronger nuclear charges (1.2e ) are assigned to the pseudo-H atoms. Bond stretching energies, RPA correlation potentials, and Kohn-Sham eigenvalues predicted by λ-ECDA are in good agreement with the benchmarks when the clusters are made reasonably large. We find that the LW RPA correlation energy is critical for obtaining accurate prediction of the RPA correlation potential, even though the LW RPA correlation energy contributes to only a few percent of the total RPA correlation energy.  相似文献   

18.
A flexible protein-peptide docking method has been designed to consider not only ligand flexibility but also the flexibility of the protein. The method is based on a Monte Carlo annealing process. Simulations with a distance root-mean-square (dRMS) virtual energy function revealed that the flexibility of protein side chains was as important as ligand flexibility for successful protein-peptide docking. On the basis of mean field theory, a transferable potential was designed to evaluate distance-dependent protein-ligand interactions and atomic solvation energies. The potential parameters were developed using a self-consistent process based on only 10 known complex structures. The effectiveness of each intermediate potential was judged on the basis of a Z score, approximating the gap between the energy of the native complex and the average energy of a decoy set. The Z score was determined using experimentally determined native structures and decoys generated by docking with the intermediate potentials. Using 6600 generated decoys and the Z score optimization criterion proposed in this work, the developed potential yielded an acceptable correlation of R(2) = 0.77, with binding free energies determined for known MHC I complexes (Class I Major Histocompatibility protein HLA-A(*)0201) which were not present in the training set. Test docking on 25 complexes further revealed a significant correlation between energy and dRMS, important for identifying native-like conformations. The near-native structures always belonged to one of the conformational classes with lower predicted binding energy. The lowest energy docked conformations are generally associated with near-native conformations, less than 3.0 Angstrom dRMS (and in many cases less than 1.0 Angstrom) from the experimentally determined structures.  相似文献   

19.
The fulvenallenyl cation (C(7)H(5)(+)) and its complex with an argon atom have been studied by explicitly correlated coupled cluster theory at the CCSD(T)-F12x(x = a, b) level and by the double-hybrid density functional B2PLYP-D. For the free cation, an accurate equilibrium structure has been established and ground-state rotational constants of A(0) = 8116.4 MHz, B(0) = 2004.3 MHz, and C(0) = 1606.9 MHz are predicted. The equilibrium dipole moment is calculated to be μ(e) = 1.305 D, with the positive end of the dipole at the acetylenic hydrogen site. Anharmonic wavenumbers of C(7)H(5)(+) were obtained by combination of harmonic CCSD(T*)-F12a values and B2PLYP-D anharmonic contributions. The most intense vibration is the pseudoantisymmetric CC stretching vibration at 2083 cm(-1). The potential energy surface of the complex C(7)H(5)(+)·Ar is characterized by two energy minima of C(s) symmetry which are separated by a very low energy barrier. The dissociation energy of the most stable structure is predicted to be D(0) = 530 ± 30 cm(-1).  相似文献   

20.
A potential energy surface for the ground electronic state of the Ar-HI van der Waals complex is calculated at the coupled-cluster with single and double excitations and a noniterative perturbation treatment of triple excitations [CCSD(T)] level of theory. Calculations are performed using for the iodine atom a correlation consistent triple-zeta valence basis set in conjunction with large-core Stuttgart-Dresden-Bonn relativistic pseudopotential, whereas specific augmented correlation consistent basis sets are employed for the H and Ar atoms supplemented with an additional set of bond functions. In agreement with previous studies, the equilibrium structure is found to be linear Ar-I-H, with a well depth of 205.38 cm(-1). Another two secondary minima are also predicted at a linear and bent Ar-H-I configurations with well depths of 153.57 and 151.57 cm(-1), respectively. The parametrized CCSD(T) potential is used to calculate rovibrational bound states of Ar-HI/Ar-DI complexes, and the vibrationally averaged structures of the different isomers are determined. Spectroscopic constants are also computed from the CCSD(T) surface and their comparison with available experimental data demonstrates the quality of the present surface in the corresponding configuration regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号