首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adsorption of nickel(II) octaethylporphyrin (NiOEP) from benzene and chloroform solutions on highly ordered pyrolytic graphite (HOPG) was investigated with a scanning tunneling microscope (STM) operated in ambient conditions. STM images show that NiOEP self-assembles on the graphite surface and that the molecules lie flat and form 2D lattices with spacings of 1.58 +/- 0.03 nm by 1.46 +/- 0.06 nm with a lattice angle of 69 degrees +/- 4 degrees averaged over both solvents. We were unable to eliminate the possibility that one unit cell distance is twice the above-reported distance. The corresponding molecular packing density, 4.5 +/- 0.3 x 10(13) molecules/cm(2), was essentially the same for benzene and chloroform solution deposition. These results differ somewhat from the structure revealed by high-resolution STM images of NiOEP on Au (111). The lack of apparent height (image intensity) in the constant current STM image of the alkane region of alkane-substituted metal porphyrins is attributed to a combination of changes in alkane configuration relative to the ring and associated changes in electronic coupling with HOMO and LUMO.  相似文献   

2.
The molecular arrangements of three different alkyl-substituted oligothiophenes both in two-dimensional adsorbed layers at a substrate interface and in bulk three-dimensional crystals were studied. Scanning tunneling microscopy (STM) was used to investigate the ordering of the conjugated oligomers in two-dimensional layers adsorbed on graphite. These data were compared with the X-ray structure determinations of single crystals revealing the arrangement in the three-dimensional bulk material. Quaterthiophenes 1 and 2, bearing dodecyl and hexyl side chains, respectively, exhibit a lamella-type stacking of the conjugated backbone concomitant with an interlocking of the alkyl side chains both on the surface and in the crystal. In contrast, the arrangement of propyl-substituted quaterthiophene 3 is rather "herringbone-like" due to the reduced interactions of the shorter alkyl side chains. In all three cases, evidently, the two-dimensional ordering at the graphite surface is coincident with the molecular packing in one cross-section of the three-dimensional crystal.  相似文献   

3.
Lanthanide double-decker (DD) complexes represent an interesting system to engineer intermolecular interactions at different distances from the surface. Such atomic-level understanding and control are crucial for the development of molecular devices with three-dimensional complexity. We herein demonstrate an example of how the surface arrangements of DD molecules are influenced by varying intermolecular interactions. By varying the size of a ligand, we observed significant expansion of the lattice even though the top ligands of DD molecules remain too small to interact directly with each other. We also demonstrate that DD molecules in different local environments adopt significantly different structures. Such structures suggest that subtle interactions exist between the top ligand of one molecule and the bottom ligands of its neighbors.  相似文献   

4.
β-联碳酰基类衍生物有序自组装膜的STM研究   总被引:1,自引:0,他引:1  
在大气条件下, 利用扫描隧道显微镜研究了四个β-联碳酰基类衍生物在高定向裂解石墨(HOPG)表面的自组装结构. 研究分子的结构中均包含π电子共轭体系和烷基链. 实验研究了分子结构对自组装结构的影响, 并利用分子结构的变化实现了自组装膜结构的调控. 结果表明, 在甲苯溶剂中制备的这些自组装结构均长程有序, 分子间氢键和偶极相互作用是影响自组装膜结构变化的重要因素.  相似文献   

5.
We have fabricated hybrid molecular chain structures formed by electron acceptor compound 1 and electron donor molecules 2 and 3 at the liquid/solid interface of graphite surface.The structural details of the mono-component and the binary assemblies are revealed by high resolution scanning tunneling microscopy (STM).Compound 1 can form two well-ordered lamellar patterns at different concentrations.In the co-adsorption structures,compounds 2 and 3 can insert into the space between molecular chains of compound 1 and form large area well-ordered nanoscale phase separated lamellar structures.The unit cell parameters for the coassemblies can be "flexibly" adjusted to make the electron donors and acceptors perfectly match along the molecular chains.Scanning tunneling spectroscopy (STS) results indicate that the electronic properties of individual molecular donors and acceptors are preserved in the binary self-assembly.These results provide molecular insight into the nanoscale phase separation of organic electron acceptors and donors on surfaces and are helpful for the fabrication of surface supramolecular structures and molecular devices.  相似文献   

6.
合成了一系列烷基取代的间苯三酚衍生物,并在大气条件下用扫描隧道显微镜研究了它们在高定向裂解石墨表面的吸附和组装行为.实验结果表明,这些自组装分子具有条状结构特征.在链长较短的分子图像中,两条平行的烷氧基链肩并肩地排列在苯环的一侧,另一条烷氧基链则排列在苯环的另一侧,链与链之间彼此相互交错排列形成均一的烷基条带.当链长增加时,这种高稳定性和密排结构遭到破坏,出现单个分子和分子对共存的组装结构.这是由于烷基链与烷基链之间以及烷基链与基底之间的作用力共同决定的.通过调控分子烷基链的长度可以得到不同的表面二维纳米结构.  相似文献   

7.
A two-dimensional molecular template structure of 1,3,5-benzenetricarboxylic acid (trimesic acid, TMA) was formed on a highly oriented pyrolytic graphite surface (HOPG) by self-assembly at the liquid-solid interface. Scanning tunneling microscopy (STM) investigations show high-resolution images of the porous structure on the surface. After the host structure was created, coronene molecules were inserted as guest molecules into the pores. STM results indicate that some of the guest molecules rotate inside their molecular bearing. Further investigations show that single coronene molecules can be directly kicked out of their pores by means of STM.  相似文献   

8.
Low temperature scanning tunneling microscopy (STM) studies of metal-free phthalocyanine (H2Pc) adsorbed on highly oriented pyrolytic graphite (HOPG) have shown ordered arrangement of molecules for low coverages up to 1 ML. Evaporation of H2Pc onto HOPG and annealing of the sample to 670 K result in a densely packed structure of the molecules. Arrangements of submonolayer, monolayer, and monolayer with additional adsorbed molecules have been investigated. The high resolution of our investigations has permitted us to image single molecule orientation. The molecular plane is found to be oriented parallel to the substrate surface and a square adsorption unit cell of the molecules is reported. In addition, depending on the bias voltage, different electronic states of the molecules have been probed. The characterized molecular states are in excellent agreement with density functional theory ground state simulations of a single molecule. Additional molecules adsorbed on the monolayer structures have been observed, and it is found that the second layer molecules adsorb flat and on top of the molecules in the first layer. All STM measurements presented here have been performed at a sample temperature of 70 K.  相似文献   

9.
STM investigations of three N-alkyl fatty acid amide molecules have been carried out to get information of their molecular arrangement on a highly oriented pyrolytic graphite surface. With variable positions of amide along the alkyl chain, complex lattices with different lattice constants were observed. Besides the lattices with a repeat unit matching one or two molecular lengths, a lattice with a repeat unit corresponding to three molecular lengths was found. In addition, the portion of different lattices depends on the length of the shorter alkyl chain. DFT-D calculations point to interactions of antiparallel oriented dipoles due to the amide group, which are distance dependent and thus larger for shorter N-alkyl chains.  相似文献   

10.
The adsorption of phthalocyanines (Pc) to various surfaces has recently been reported to lead to a lowering of symmetry from C4 to C2 in scanning tunneling microscope (STM) images. Possible origins of the reduced symmetry involve the electronic structure or geometric deformation of the molecules. Here, the origin of the reduction is clarified from a comprehensive theoretical study of CoPc adsorbed on the Cu(111) surface along with the experimental STM data. Total energy calculations using different schemes for the exchange-correlation energy and STM simulations are compared against experimental data. We find that the symmetry reduction is only reproduced when van der Waals corrections are included into the formalism. It is caused by a deformation along the two perpendicular molecular axes, one of them coming closer to the surface by around 0.2 A?. An electronic structure analysis reveals (i) the relevance of the CoPc interaction with the Cu(111) surface state and (ii) that intramolecular features in dI/dV maps clearly discriminate a Co-derived state from the rest of the Pc states.  相似文献   

11.
Tetradecylferrocene (4, Fc-(CH2)13CH3) was synthesized via lithiation of ferrocene by treatment with tert-butyl lithium, followed by alkylation with 1-bromotetradecane. Complex 4 forms a physisorbed ordered molecular monolayer on the surface of highly oriented pyrolytic graphite (HOPG) that was analyzed by scanning tunneling microscopy (STM). It features a lamellar structure with single rows of ferrocenyl moieties separating connecting areas formed by the long alkyl chains which are arranged parallel to each other. The ordering principle of 4 on the surface can be related to the arrangement of Fc-(CH2)13CH3 molecules in the three-dimensional crystal lattice.  相似文献   

12.
The synthesis and structures of the N‐[(2‐hydroxy‐3‐methyl‐5‐dodecylphenyl)methyl]‐N‐(carboxymethyl)glycine disodium salt (H L ) ligand and its neutral mononuclear complex [FeIII( L )(EtOH)2] ( 1 ) are reported. Structural and electronic properties of 1 were investigated by using scanning tunneling microscopy (STM) and current imaging tunneling spectroscopy (CITS) techniques. These studies reveal that molecules of 1 form well‐ordered self‐assemblies when deposited on a highly oriented pyrolytic graphite (HOPG) surface. At low concentrations, single or double chains (i.e., nanowires) of the complex were observed, whereas at high concentration the complex forms crystals and densely packed one‐dimensional structures. In STM topographies, the dimensions of assemblies of 1 found on the surface are consistent with dimensions obtained from X‐ray crystallography, which indicates the strong similarities between the crystal form and surface assembled states. Double chains are attributed to hydrogen‐bonding interactions and the molecules align preferentially along graphite defects. In the CITS image of complex 1 a strong tunneling current contrast at the positions of the metal ions was observed. These data were interpreted and reveal that the bonds coordinating the metal ions are weaker than those of the surrounding ligands; therefore the energy levels next to the Fermi energy of the molecule should be dominated by metal‐ion orbitals.  相似文献   

13.
Using the direct measurement of the photosensitized luminescence of singlet molecular oxygen (1O2) the rate constants (kq) have been determined for 1O2 quenching by the monomeric molecules of the following phthalocyanines and naphthalocyanines in chloroform: tetra-(4-tert-butyl) phthalocyanine (I); octa-(3,6-butoxy) phthalocyanine (II), tetra-(6-tert-butyl)-2,3 naphthalocyanine (III), aluminium tetra-(1-tert-phenyl)-2,3 naphthalocyanine (IV), tri-(n-hexyl-siloxy) derivatives of silicon- (V), tin- (VI), aluminium- (VII) and gallium- (VIII) 2,3 naphthalocyanine. The following kq values were obtained (kq x 10(-8) M-1 s-1): 2.9 (I), 59 (II), 100 (III), 20 (IV), 3.9 (V), 53 (VI), 33 (VII), 110 (VIII). As most of the quenchers have the low-lying triplet levels, a contribution of the quenching mechanism based on the energy transfer from 1O2 to these levels has been analysed. A formula is proposed describing the relation between kq values caused by this mechanism, and photophysical constants of the quencher triplet state. This formula was applied to phthalocyanines, naphthalocyanines, beta-carotene and bacterochlorophyll a. The data suggest that the energy transfer can fully explain the activity of V and strongly contributes into the activities of II, III and VI-VIII. A charge transfer interaction might be an additional mechanism involved in 1O2 quenching by compounds studied. As some phthalocyanines and naphthalocyanines are strong physical quenchers of singlet oxygen they can be used as efficient inhibitors for photodestructive processes in photochemical systems.  相似文献   

14.
We have shown that STM-tip-induced chain polymerization of 10,12-tricosadiynoic acid (TCDA) in a self-organized monolayer at the liquid-solid interface of TCDA on highly oriented pyrolytic graphite is possible. The oligomers thus produced started at the point where a voltage pulse was applied between the STM tip and the sample during a short period when the feedback condition was momentarily suspended (as it is for scanning tunneling spectroscopy). Polymerization probabilities depended upon the length of the applied voltage pulse and were generally higher for longer pulse widths in the 10-ms to 100-micros time scales, approaching unit probability for the former and decreasing quickly to a few tens of percent for the latter. The polymerization could be confined to certain nanometer-sized areas by using "molecule corrals,"and polymerization appeared to be governed by topochemical constraints. Polymerization across domain boundaries, or over molecule corral edges, was never observed in over approximately 150 observations. Due to the constant supply of nonpolymerized molecules from the covering solution, a dynamic exchange between molecules on the surface and in the solution was possible. This exchange occurred on a time scale that was comparable to the image acquisition time (approximately 10(1) s), and appeared to depend weakly upon the length of the desorbing oligomer. The desorption process was probably also influenced by interactions with the STM tip.  相似文献   

15.
利用STM对吸附在导电基底上的液晶进行研究,能提供近原子分辨的液晶分子图象,这一创新不仅拓宽了STM的研究领域,也使STM成为研究液晶吸附的重要手段之一.根据液晶相变特征不同,样品的制备方法大致分四种情况:直接法,加热法,气相沉积法和溶剂法.无论采用以上哪种方法,  相似文献   

16.
Self-assembled monolayers of chrysene and indene on graphite have been observed and characterized individually with scanning tunneling microscopy (STM) at 80 K under low-temperature, ultrahigh vacuum conditions. These molecules are small, polycyclic aromatic hydrocarbons (PAHs) containing no alkyl chains or functional groups that are known to promote two-dimensional self-assembly. Energy minimization and molecular dynamics simulations performed for small groups of the molecules physisorbed on graphite provide insight into the monolayer structure and forces that drive the self-assembly. The adsorption energy for a single chrysene molecule on a model graphite substrate is calculated to be 32 kcal/mol, while that for indene is 17 kcal/mol. Two distinct monolayer structures have been observed for chrysene, corresponding to high- and low-density assemblies. High-resolution STM images taken of chrysene with different bias polarities reveal distinct nodal structure that is characteristic of the molecular electronic state(s) mediating the tunneling process. Density functional theory calculations are utilized in the assignment of the observed electronic states and possible tunneling mechanism. These results are discussed within the context of PAH and soot particle formation, because both chrysene and indene are known reaction products from the combustion of small hydrocarbons. They are also of fundamental interest in the fields of nanotechnology and molecular electronics.  相似文献   

17.
Tip-sample distance-dependent current-voltage tunneling spectroscopy on monolayers of base-free naphthalocyanine (Nc), a planar molecule, and tin-naphthalocyanine (SnNc), a nonplanar molecule, has been studied on a freshly cleaved highly oriented pyrolytic graphite (HOPG) surface using a variable-temperature STM at 50 K under ultra-high vacuum conditions. The current-voltage curves show an unsymmetrical diode-like nature especially at large tip-sample distances in both cases. Normalized differential conductivity of all spectra has been considered for further analysis. The ionization and electron affinity levels are compared with the single-molecule local density of states (LDOS) near the Fermi energy using a theoretical calculation for Nc and SnNc. A tip-sample distance-dependent highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap shrinking is observed in the case of Nc, in which the filled levels of the molecules are pinned while the unfilled levels near the Fermi energy are shifting toward lower energy. In contrast, there is no such HOMO-LUMO gap shrinking in the case of the SnNc decreasing tip-sample distance. However, a subsequent increase in the tunneling current was observed by almost 1 order of magnitude compared with Nc. A model is proposed to explain this phenomenon where the Nc-graphite interface is considered as a pure capacitive interface.  相似文献   

18.
The adsorption of base-free naphthalocyanine (Nc), a planar molecule, and tin-naphthalocyanine (SnNc), a nonplanar molecule, on a freshly cleaved highly oriented pyrolytic graphite (HOPG) surface at low sample temperature (50 K) has been studied using a variable-temperature scanning tunneling microscope in ultra-high vacuum conditions. The planar molecules form large areas of defect-free ordered monolayer with high molecular packing density while the nonplanar molecules show different phases of adsorption with lower molecular packing density. The SnNc adlayers follow the same geometry as the graphite substrate and form pure phases of adsorption with either all molecules in a Sn(2+) up or Sn(2+) down geometry. Moreover, a one-dimensional selectivity is observed in still another phase of Sn(2+) down geometry. Multilayers show a completely different kind of adsorption in each case. Nc molecules show columnar pi-stacking whereas the SnNc molecules exhibit noncolumnar stacking. Distinctly, a voltage-induced flipping of nonplanar tin-naphthalocyanine in the monolayer has been observed which can possibly be applied to single-molecular information storage.  相似文献   

19.
Tripod-type molecules with long alkyl chains, 1,1,1-tris(4-alkoxyphenyl)ethanes with octadecyloxy or docosyloxy chains, self-assemble into two-dimensional crystallites on drop-casting onto the surface of highly oriented pyrolytic graphite. In the two-dimensional crystalline domain, the molecules are organized in a mortise-and-tenon motif, as revealed by scanning tunneling microscopy. The time evolution of the crystallite formation has been followed by the dynamic force mode atomic force microscopy. The tripods may be used as a basis for the extension of a two-dimensional order into three-dimensional molecular architectures.  相似文献   

20.
We report the tunneling behavior of homogeneous and heterogeneous molecular junctions using p-type molecules of iron phthalocyanine (FePc), phthalocyanine (H(2)Pc), and copper(II) octaalkoxyl substituted phthalocyanine (CuPcOC8) and n-type molecule of copper hexadecafluorophthalocyanine (F(16)CuPc). The molecular films formed on the electrode surfaces were inspected by X-ray photoelectron spectroscopy (XPS). The measured characteristic tunneling curves of single-component phthalocyanines revealed comparable energy gaps for homogeneous tunneling junctions using the photoemission method. In contrast, for the heterogeneous tunnel junctions of mixed phthalocyanines including fluorinated phthalocyanine a distinctive offset of the energy gaps to the positive bias voltage direction can be clearly identified. It is suggested that the substitution of phthalocyanines and surface affinity of phthalocyanines could contribute to the controlled phase separation within the heterogeneous tunneling junctions. The apparent shift of the tunneling spectra is attributed to the existence of an internal electric field originated with the phase separation of the binary mixture of p-type and n-type phthalocyanines within the tunneling junction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号