首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the effect of monopolar charge disorder on the classical fluctuation-induced interactions between randomly charged net-neutral dielectric slabs and discuss various generalizations of recent results [A. Naji et al., Phys. Rev. Lett. 104, 060601 (2010)] to highly inhomogeneous dielectric systems with and without statistical disorder correlations. We shall focus on the specific case of two generally dissimilar plane-parallel slabs, which interact across vacuum or an arbitrary intervening dielectric medium. Monopolar charge disorder is considered to be present on the bounding surfaces and/or in the bulk of the slabs, may be in general quenched or annealed and may possess a finite lateral correlation length reflecting possible "patchiness" of the random charge distribution. In the case of quenched disorder, the bulk disorder is shown to give rise to an additive long-range contribution to the total force, which decays as the inverse distance between the slabs and may be attractive or repulsive depending on the dielectric constants of the slabs. By contrast, the force induced by annealed disorder in general combines with the underlying van der Waals forces in a nonadditive fashion, and the net force decays as an inverse cube law at large separations. We show, however, that in the case of two dissimilar slabs, the net effect due to the interplay between the disorder-induced and the pure van der Waals interactions can lead to a variety of unusual nonmonotonic interaction profiles between the dielectric slabs. In particular, when the intervening medium has a larger dielectric constant than the two slabs, we find that the net interaction can become repulsive and exhibit a potential barrier, while the underlying van der Waals force is attractive. On the contrary, when the intervening medium has a dielectric constant between that of the two slabs, the net interaction can become attractive and exhibit a free energy minimum, while the pure van der Waals force is repulsive. Therefore, the charge disorder, if present, can drastically alter the effective interaction between net-neutral objects.  相似文献   

2.
3.
《Liquid crystals》1999,26(7):999-1005
We investigate the influence of dispersion interaction on a variety of thermodynamic properties of discotic nematic liquid crystals at the discotic nematic-isotropic transition. We report calculations for a hard oblate ellipsoidal system, superposed with an attractive interaction represented by dispersion interaction subjected to different external pressures ranging from 1 to 300 bar. We consider a model system (which simulates a discotic nematic liquid crystal) in which molecules are assumed to interact via a pair potential having both repulsive and attractive parts. The repulsion part is represented by a repulsion between hard oblate ellipsoids of revolution and is a short range, rapidly varying potential. The attractive potential, a function of centre of mass distance and relative orientation between two molecules, is represented by dispersion interaction. The properties of the reference system and first order perturbation term are evaluated using a decoupling approximation which decouples orientational from translational degrees of freedom. The inclusion of fourth and sixth rank orientational order parameters in the calculation slightly improves the result. The role of pressure on phase transition parameters has also been studied.  相似文献   

4.
We investigate the influence of dispersion interaction on a variety of thermodynamic properties of discotic nematic liquid crystals at the discotic nematic-isotropic transition. We report calculations for a hard oblate ellipsoidal system, superposed with an attractive interaction represented by dispersion interaction subjected to different external pressures ranging from 1 to 300 bar. We consider a model system (which simulates a discotic nematic liquid crystal) in which molecules are assumed to interact via a pair potential having both repulsive and attractive parts. The repulsion part is represented by a repulsion between hard oblate ellipsoids of revolution and is a short range, rapidly varying potential. The attractive potential, a function of centre of mass distance and relative orientation between two molecules, is represented by dispersion interaction. The properties of the reference system and first order perturbation term are evaluated using a decoupling approximation which decouples orientational from translational degrees of freedom. The inclusion of fourth and sixth rank orientational order parameters in the calculation slightly improves the result. The role of pressure on phase transition parameters has also been studied.  相似文献   

5.
The effects of various kosmotropic and chaotropic cosolvents and salts on the intermolecular interaction potential of positively charged lysozyme is evaluated at varying protein concentrations by using synchrotron small-angle X-ray scattering in combination with liquid-state theoretical approaches. The experimentally derived static structure factors S(Q) obtained without and with added cosolvents and salts are analysed with a statistical mechanical model based on the Derjaguin-Landau-Verwey-Overbeek (DLVO) potential, which accounts for repulsive and attractive interactions between the protein molecules. Different cosolvents and salts influence the interactions between protein molecules differently as a result of changes in the hydration level or solvation, in charge screening, specific adsorption of the additives at the protein surface, or increased hydrophobic interactions. Intermolecular interaction effects are significant above protein concentrations of 1 wt %, and with increasing protein concentration, the repulsive nature of the intermolecular pair potential V(r) increases markedly. Kosmotropic cosolvents like glycerol and sucrose exhibit strong concentration-dependent effects on the interaction potential, leading to an increase of repulsive forces between the protein molecules at low to medium high osmolyte concentrations. Addition of trifluoroethanol exhibits a multiphasic effect on V(r) when changing its concentration. Salts like sodium chloride and potassium sulfate exhibit strong concentration-dependent changes of the interaction potential due to charge screening of the positively charged protein molecules. Guanidinium chloride (GdmCl) at low concentrations exhibits a similar charge-screening effect, resulting in increased attractive interactions between the protein molecules. At higher GdmCl concentrations, V(r) becomes more repulsive in nature due to the presence of high concentrations of Gdm(+) ions binding to the protein molecules. Our findings also imply that in calculations of thermodynamic properties of proteins in solution and cosolvent mixtures, activity coefficients may not generally be neglected in the concentration range above 1 wt % protein.  相似文献   

6.
7.
The model of solute— solvent interaction based on dipole-induced-dipole forces (Kirkwood-Bauer-Magat) has been generalized, yielding an expression for the energy as a function of solute position and orientalion within a spherical cavity in a dielectric medium. An analogous relation has been derived for the dispersion energy. Barriers to rotation of the solute molecule and shifts in its vibrational frequency are calculated as functions of cavity radius and eccentricity for the case of dilute solutions of HCl in CCl4. It is found that the effect of dispersion forces on the vibrational frequency of HCl is two-to-three times more important than the traditional dipole-induced-dipole contribution.  相似文献   

8.
The excitonic effects of biphenyl and 2,2′-bithiophene are investigated within an ab initio framework. For this purpose the Bethe–Salpeter equation for the two-particle Greens function is solved. Therefrom the imaginary part of the dielectric function is derived, which includes the electron–hole interaction in the absorption process. It turns out that these organic molecular crystals, which are built by small molecules, give rise to sizeable exciton binding-energies, which are between 0.7 and 0.8 eV. To study the influence of the intermolecular interaction, the exciton binding energy of crystalline biphenyl is calculated as a function of pressure. The decrease of both, the band gap and the exciton binding energy, results in a slight red-shift of the lowest optically active singlet exciton.  相似文献   

9.
The kinetics of coagulation leading, in the long run, to the establishment of the aggregation equilibrium is studied by the flow ultramicroscopy method with allowance for the probability of aggregate formation and disintegration. The case of a slight aggregation is considered when the doublet-to-singlet concentration ratio in a disperse system is low. An equation characterizing the time dependence of the average sizes of aggregates is derived. The equation is analyzed and methods are proposed for determining the repulsive barrier and the depth of the energy minimum characterizing the potential of interparticle pair interaction from experimental data on coagulation kinetics. The case of long-range coagulation is investigated. The effects of particle size, Hamaker’s constant, and electrolyte concentration in a dispersion medium on the probability of disaggregation are estimated in terms of the theory of surface forces. Limits of the flow microscopy method in the determination of the secondary energy minimum value are considered.  相似文献   

10.
Ab initio potential energy curves have been calculated for the ground state of Xe2 including dispersion interactions. The total interaction energy has been approximated by a sum of the repulsive Hartree-Fock interaction plus the attractive dispersion interaction which is appropriately damped to take account of charge overlap.  相似文献   

11.
Explicit formulae for the calculation of the exchange polarization energy in the interaction of closed-shell atoms or molecules have been derived by assuming neglect of the electron correlation within the noninteracting systems. The dispersion part of the exchange polarization energy has been represented as a sum of contributions arising from the interaction of two, three or four orbitals at a time. Each of these contributions is given by an integral involving the orbitals engaged in the interaction and the pair functions describing the dispersion interaction between these orbitals. The numerical calculations for the interaction of two ground-state beryllium atoms show that the exchange dispersion energy is positive and quenches about 5 to 10 per cent of the dispersion term. This results in a decrease of the interaction energy, computed as a sum of the SCF and dispersion components, by 6 to 30 per cent for interatomic distances ranging from 10 to 7 bohrs.Simplified formulae for estimating the exchange dispersion energy in the interaction of larger systems are also proposed and their accuracy is discussed.  相似文献   

12.
During the tip approach to hydrophobic surfaces like the water/air interface, the measured interaction force reveals a strong attraction with a range of approximately 250 nm at some points along the interface. The range of this force is approximately 100 times larger than the measured for gold (approximately 3 nm) and 10 times larger than the one for hydrophobic silicon surfaces (approximately 25 nm). At other points the interface exerts a medium range repulsive force growing stepwise as the tip approaches the interface plane, consequently the hydrophobic force is a strong function of position. To explain these results we propose a model where the force on the tip is associated with the exchange of a small volume of the interface with a dielectric permittivity epsilon(int) by the tip with a dielectric permittivity epsilon(tip). By assuming a oscillatory spatial dependence for the dielectric permittivity it is possible to fit the measured force profiles. This dielectric spatial variation was associated with the orientation of the water molecules arrangement in the interfacial region. Small nanosized hydrogen-bond connected cages of water molecules present in bulk water at the interface are oriented by the interfacial electric field generated by the water molecules broken bonds, one broken hydrogen bond out of every four. This interfacial field orients small clusters formed by approximately 100 water molecules into larger clusters (approximately 100 nm). In the limit of small (less than 5 nm thick) water molecule cages we have modeled the static dielectric permittivity (epsilon) as the average response of those cages. In these regions the dielectric permittivity for water/air interfaces decreases monotonically from the bulk value epsilon approximately 80 to approximately 2 at the interface. For regions filled with medium size cages, the tip senses the structure of each cage and the static dielectric permittivity is matched to the geometrical features of these cages sized approximately 25 to 40 nm. Interfacial electric energy density values were calculated using the electric field intensity and the dielectric permittivity obtained by the fitting of the experimental points. The integration of the electric energy density along the interfacial region gives a value of 0.072 J m(-2) for interfacial energy density for points where the hydrophobic force has a range of approximately 250 nm. Regions formed by various clusters result in lower values of the interfacial energy density.  相似文献   

13.
The analysis of Raman anisotropy shift as a function of solvent concentration shows the weakening of pair interaction of the molecules due to the influence of solvent-induced perturbations. The present study deals with the effect of dielectric constant of the medium on the non-coincidence effect (anisotropy shift) and the role of van der Waals' volume on the anisotropic Raman bandwidth. The CO stretching vibration of o-chlorobenzaldehyde (OCBD) molecule was studied in various polar and non-polar solvents namely CCl4, CH3CN, C6H5Cl and CH3C6H5. The data on anisotropic bandwidth are interpreted using the van der Waals' volume within the framework of lineshape theory of Bratos and Tarjus, while the Onsager-Fr?hlich model on non-coincidence effect has been tested. Our study shows that the repulsive potential of the type e-alphaR is playing an important role in the OCBD-solvent interactions. The vanishing of anisotropy shift (non-coincidence effect) on dilution may be explained on the basis of repulsive forces playing a significant role in solute-solvent interactions.  相似文献   

14.
平板型高电位胶粒双电层的相互作用   总被引:4,自引:0,他引:4  
利用线性迭加法,提出了平行平板型高电位颗粒之间的弱相互作用的近似表达式.结合文献[3]给出的强相互作用表达式,对高电位平行平板型颗粒的相互作用给出了完整的描述,和精确数值解吻合相当好.强弱相互作用的接合点在κh=4,误差在接合点处最大,~10%.根据Derjaguin法和改进的Derjaguin法,求出了高电位球颗粒在恒电位条件下的相互作用能.  相似文献   

15.
In this work, the long-range interaction between the pairs of nucleotides situated on the opposite ends of a double broken DNA helix have been studied theoretically. The long-range energy was considered as a sum of electrodynamics Van der Waals and electrostatic Coulomb interactions. The most important region for the problem under consideration is about 5-15 A between the nucleotides. The calculations of the energy of long-range interaction have shown that during the interaction between the pairs CG-CG, there is a potential repulsive barrier with the amplitude of about 4 kT at the distance of 7-9 A, and during the interaction between the pairs TA-TA, there is a potential repulsive barrier with the amplitude of about 1.5 kT at the same distance, which can prevent DNA from enzyme selfrepairing after a double DNA break. This barrier vanishes as the pH of intracellular medium increases. The remainder pairs of nucleotides do not have such barrier, and there is always an attraction like interaction.  相似文献   

16.
The electrical potential for the case of two identical, planar parallel particles immersed in a salt-free medium, where the ionic species in the counterions come solely from those that dissociated from the surfaces, is evaluated. Analytical expressions for the electrical potential, the concentration of counterions, and the electrical energy are derived. We show that in a salt-free dispersion, if the separation distance between two particles is sufficiently far, the electrical repulsive force dominates, that is, the total energy is positive and does not have a secondary minimum, which is not the case for a dispersion where both coions and counterions are present. Also, the conditions used to calculate the critical coagulation concentration in the classic Derjaguin-Landau-Verwey-Overbeek theory become inappropriate and the Derjaguin approximation is inapplicable. We show that if the surface charge density exceeds approximately 0.04 Cm(2), the stability of a salt-free dispersion remains essentially the same. If the surface charge density is sufficiently high, the maximum separation distance between two particles below which coagulation occurs is in the ranges of [0,1 nm] and [1,7 nm] for the cases where the Hamaker constant is 10(-20) and 10(-19) J, respectively.  相似文献   

17.
A formulation based on measurable dielectric dispersion of enzymes is developed to estimate fluctuations in electrostatic interaction energy on time scales as long as milliseconds to seconds at a local site in enzymes. Several single molecule experimental obsevations occur on this time scale, currently unreachable by real time computational trajectory simulations. We compare the experimental results on the autocorrelation function of the fluctuations of catalysis rate with the calculations using the dielectric dispersion formulation. We also discuss the autocorrelation functions of the fluorescence lifetime and of spectral diffusion. We use a previously derived relation between the observables and the electric field fluctuations and calculate the latter using dielectric dispersion data for the proteins and the Onsager regression hypothesis.  相似文献   

18.
In most theoretical treatments of colloidal particles with hairy surfaces, only the steric effect is taken into account. The steric force is a short-range interaction and acts only when the chains on different particles begin to interpenetrate each other. However, since the hairy chains are extended into the continuous phase, they constrain the orientation of the water molecules near the surface and, as a result, the dielectric constant in that region can become very different from that in the bulk. The low dielectric constant affects the distributions of ion concentrations and the gradient of the electric field. Therefore, the double-layer interactions between two plates with hairy surfaces cannot be calculated on the basis of the classical Gouy-Chapman theory, which involves a uniform dielectric constant in the Poisson-Boltzmann equation. A model which accounts for the difference in dielectric constants in the hairy region and outside that region is therefore proposed. The ion specificity is also taken into account by using Born's expression for the free energy of hydration of ions. The repulsive forces calculated via the Gouy-Chapman theory and via the new model are compared. The hairy region can have a long range effect on the repulsive double-layer interactions.  相似文献   

19.
Several ionic and nonionic additives are known to affect structural stability of proteins in aqueous solutions. At a fundamental level, the mechanism of stabilization or destabilization of proteins by cosolvents must be related to three-body interactions between the protein, additive, and the water medium. In this study, the role of the Lifshitz-van der Waals electrodynamic interaction between various additives (sucrose, glycerol, urea, poly(ethylene glycol)-200, betaine, taurine, proline, and valine) and bovine serum albumin (BSA) in water medium was examined. The electrodynamic interaction energy was attractive for all of the additives studied here when both far ultraviolet and infrared relaxations of the additives were included in their dielectric susceptibility representations. However, when only the infrared contribution was included for structure stabilizers and both far ultraviolet and infrared contributions for the structure destabilizers, the resulting electrodynamic interaction energy (E/kT) followed the structure stabilizing and/or destabilizing behavior of the additives; that is, the interaction was attractive for urea and PEG200 (structure destabilizers), whereas it was repulsive for sucrose, glycerol, betaine, taurine, alanine, valine, and proline (structure stabilizers). The electrodynamic interaction energy E/kT at any given surface-to-surface separation distance between the additives and BSA was positively correlated (r(2) = 0.92) with the experimental thermal denaturation temperature (T(d)) of BSA in 1 M solutions of the additives. These analyses provided a mechanistic basis for the experimental observations of exclusion of the structure-stabilizing additives from the protein-water interface and binding of the structure-destabilizing additives to the protein surface. The role of water structure in the three-body electrodynamic interaction is discussed. It is hypothesized that in the case of additives that enhance water structure the hydration shells formed around the additives effectively dampen the contribution of ultraviolet frequencies to the dielectric susceptibility of the additives and thus impart repulsive electrodyanamic interaction between the additive and the protein, whereas the opposite occurs in the case of additives that breakdown the hydrogen-bonded structure of water.  相似文献   

20.
Repulsion and dispersion parameters for alkali–metal halide diatomic molecules were computed by ionic Rittner and truncated Rittner models with radial dependent repulsion terms. Experimental data on the bond energies, the equilibrium interionic distances, and the spectroscopic frequencies were employed for the purpose. The polarizabilities used were also computed from the experimental dipole moments of alkali–metal halides. The potential parameters obtained were compared with parameters from other sources and checked for consistency. The computed potential parameters of alkali–metal halide monomer molecules were used to predict the energetics and geometries for alkali–metal halide dimer molecules. The predicted values are in good agreement with experiment and other calculations indicating the consistency and reliability of the potential employed. Although the magnitude of repulsive and dispersive energy terms varies with potential functions employed, the difference between the two for a molecule is constant. The repulsive term is more sensitive than the attractive term. The uncertainty in the exponential repulsion results in an inaccurate representation of the attractive contribution. Introduction of the radial-dependent repulsion term changes the relative magnitudes of repulsive and dispersive parameters and hence the relative contribution to the total potential with monomers. But this has no significant effect on the energetics and geometries of the dimers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号