首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sequential injection analysis (SIA) system is coupled with dynamic surface tension detection (DSTD) for the purpose of studying the interfacial properties of surface-active samples. DSTD is a novel analyzer based upon a growing drop method, utilizing a pressure sensor measurement of drop pressure. The pressure signal depends on the surface tension properties of sample solution drops that grow and detach at the end of a capillary tip. In this work, SIA was used for creating a reagent concentration gradient, and for blending the reagent gradient with a steady-state sample. The sample, consisting of either sodium dodecyl sulfate (SDS) or poly(ethylene glycol) at 1470 g mol−1 (PEG 1470), elutes with a steady-state concentration at the center of the sample plug. Reagents such as Brij®35, tetrabutylammonium (TBA) hydroxide and β-cyclodextrin were introduced as a concentration gradient that begins after the sample plug has reached the steady-state concentration. By blending the reagent concentration gradient with the sample plug using SIA/DSTD, the kinetic surface pressure signal of samples mixed with various reagent concentrations is observed and evaluated in a high throughput fashion. It was found that the SIA/DSTD method consumes lesser reagent and required significantly less analysis time than traditional FIA/DSTD. Four unique chemical systems were studied with regard to how surface activity is influenced, as observed through the surface tension signal: surface activity addition, surface activity reduction due to competition, surface activity enhancement due to ion-pair formation, and surface activity reduction due to bulk phase binding chemistry.  相似文献   

2.
Sequential injection immunoassay systems for environmental measurements based on the selective immunoreaction between antigen and antibody were described. A sequential injection analysis (SIA) technique is suitable to be applied for the procedure of enzyme-linked immunosorbent assay (ELISA), because the washing and the addition of reagent solutions can be automated by using a computer-controlled syringe pump and switching valve. We selected vitellogenin (Vg), which is a biomarker for evaluating environmental risk caused by endocrine-disrupting chemicals in the hydrosphere, and linear alkylbenzene sulfonates (LAS) and alkylphenol polyethoxylates (APEO), which are versatile surfactants, as target analytes in the flow immunoassay systems. For Vg monitoring, SIA systems based on spectrophotometric, chemiluminescence, and electrochemical determinations were constructed. On the other hand, chemiluminescence determination was applied to the detection of LAS and APEO. For APEO, an SIA system combined with surface plasmon resonance (SPR) sensor was also developed. These new sequential injection immunoassay systems are expected to be useful systems for environmental analysis.  相似文献   

3.
van Staden JF  Stefan RI 《Talanta》2004,64(5):1109-1113
The simplicity of the sequential injection (SIA) manifold and its low need for maintenance makes it an ideal tool in speciation. As miniaturization and reduction of reagent consumption are also ultimate goals in chemical sensing, it is useful to review the use of combined injection and programmed flow as a central issue in designing SIA systems with chemical sensors and structurally simplified chemical analysers. This overview gives an insight into the current state, analytical scope and performance characteristics of sequential injection systems as analytical tools for speciation. The suitability of SIA for speciation analysis is illustrated by the methods used in the conduits of sequential injection systems for the chemical conversion of different chemical forms into detectable chemical species. Configurations of the basic sequential injection speciation analysis systems were designed around a multi-syringe-time-based-injection system with one detector, direct and indirect speciation of different forms using a single detector including diode array detection and direct speciation of different forms using multiple detection.

Examples showing the use of SIA for the simultaneous determination or speciation of metal ions, inorganic anions and organic compounds are given with some recent results from our research groups.  相似文献   


4.
Determination of Cu, Pb, Cd and Zn was performed in sediment extracts obtained according to the three steps sequential extraction procedure proposed by the European Community Standards, Measurements and Testing Program. The metal content was determined by anodic stripping voltammetry with a thin mercury film electrode controlled by a sequential injection (SIA) system. The proposed method improved the reproducibility of conventional anodic stripping voltammetry, as well as the sample throughput, allowing analysis of 30 to 45 samples per hour. The influence of flow rate and sample volume was studied to achieve an adequate sensitivity for the leachate studied. No interferences due to adsorption of organic matter, colloids, or complexes with slow rate of dissociation were observed. The intermetallic formation of Cu-Zn was avoided by forming the mercury film in presence of Ga(III) ions in the SIA system, resulting in low consumption of reagent in comparison to flow injection or continuous flow systems. Results were in good agreement with those obtained by Induced Coupled Plasma – Atomic Emission Spectroscopy (ICP- AES). Received: 18 October 1999 / Revised: 14 December 1999 / Accepted: 19 December 1999  相似文献   

5.
Maskula S  Nyman J  Ivaska A 《Talanta》2000,52(1):91-99
A sequential injection analysis (SIA) titration method has been developed for acid-base titrations. Strong and weak acids in different concentration ranges have been titrated with a strong base. The method is based on sequential aspiration of an acidic sample zone and only one zone of the base into a carrier stream of distilled water. On their way to the detector, the sample and the reagent zones are partially mixed due to the dispersion and thereby the base is partially neutralised by the acid. The base zone contains the indicator. An LED-spectrophotometer is used as detector. It senses the colour of the unneutralised base and the signal is recorded as a typical SIA peak. The peak area of the unreacted base was found to be proportional to the logarithm of the acid concentration. Calibration curves with good linearity were obtained for a strong acid in the concentration ranges of 10(-4)-10(-2) and 0.1-3 M. Automatic sample dilution was implemented when sulphuric acid at concentration of 6-13 M was titrated. For a weak acid, i.e. acetic acid, a linear calibration curve was obtained in the range of 3x10(-4)-8x10(-2) M. By changing the volumes of the injected sample and the reagent, different acids as well as different concentration ranges of the acids can be titrated without any other adjustments in the SIA manifold or the titration protocol.  相似文献   

6.
Automation of the molybdenum blue method by sequential injection (SIA) for the on-line monitoring of phosphate in natural waters is presented. Although sequential injection analysis runs at one fifth the speed of conventional FIA, it presents many advantages such as simplicity of the manifold, robustness and computer compatibility. A reduction in reagent and sample consumption is also observed. Flow detector fouling does not occur in SIA manifolds as the detector is in contact with water between analysis. The proposed SIA analyser is able to monitor phosphate in the range 0–70 mg l–1 with a standard deviation of 0.9%. The detection limit is 0.5 mg l–1 PO 4 3– .  相似文献   

7.
Determination of Cu, Pb, Cd and Zn was performed in sediment extracts obtained according to the three steps sequential extraction procedure proposed by the European Community Standards, Measurements and Testing Program. The metal content was determined by anodic stripping voltammetry with a thin mercury film electrode controlled by a sequential injection (SIA) system. The proposed method improved the reproducibility of conventional anodic stripping voltammetry, as well as the sample throughput, allowing analysis of 30 to 45 samples per hour. The influence of flow rate and sample volume was studied to achieve an adequate sensitivity for the leachate studied. No interferences due to adsorption of organic matter, colloids, or complexes with slow rate of dissociation were observed. The intermetallic formation of Cu-Zn was avoided by forming the mercury film in presence of Ga(III) ions in the SIA system, resulting in low consumption of reagent in comparison to flow injection or continuous flow systems. Results were in good agreement with those obtained by Induced Coupled Plasma - Atomic Emission Spectroscopy (ICP-AES).  相似文献   

8.
Determination of salbutamol using sequential injection analysis (SIA) with chemiluminescence and fluorescence detection has been devised. The chemiluminescence signal was emitted during the oxidation of salbutamol by potassium permanganate in sulfuric acid medium. Sodium polyphosphate was used as chemiluminescence enhancer. The fluorescence signal (excitation wavelength 230 nm) was also measured in sulfuric acid medium. Both detection techniques were compared with respect to the application of the methods to the determination of salbutamol in biological materials. The sample pre-treatment takes place directly in the SIA system, when salbutamol is adsorbed on the solid-phase (Baker-carboxylic acid) microcolumn integrated into the system. Sulfuric acid serves both as the reagent and the eluent. The lab-made SIA system consisted of a 2.5-mL Cavro syringe pump, ten-port Vici Valco selection valve and Spectra-Physics FS 970 fluorescence detector, which was lab-modified for chemiluminescence detection. The system was controlled by a PC using originally compiled LabVIEW-supported software. Concentrations, volumes of reagents and flow rates were optimised by a simplex method. Salbutamol was determined in the linear range 0.05-10 microg mL(-1) (RSD 1.53%), with the detection limit (3 sigma) 0.03 microg mL(-1) and sample throughput of 42 samples per hour with chemiluminescence detection in standard solutions. The fluorescence detection enabled the determination of salbutamol in standard solutions in the linear range 0.5-100 microg mL(-1) (RSD 2.69%), with the detection limit 0.2 microg mL(-1) and sample throughput of 24 h(-1). The proposed methods were applied to the determination of salbutamol in human serum and urine. However, serum is a very complicated matrix and the SIA-SPE analysis did not provide satisfactory results. It was possible to determine salbutamol in human urine using this technique. Better recovery was achieved with fluorescence detection.  相似文献   

9.
A sequential injection analysis (SIA) system is proposed for the determination of zinc in pharmaceutical samples. The method is based on the spectrophotometric detection of zinc using xylenol orange as a colour reagent at 568 nm. The system can be used to monitor zinc at a frequency of 30 samples h(-1) with an average recovery of +/-98.5% and a relative standard deviation of less than 1%. A linear relationship between peak height and zinc concentration is obtained between 10 and 60 mg L(-1). The results obtained are in good agreement with those obtained by use of a standard method.  相似文献   

10.
New generation of sequential injection analysis (SIA) called sequential injection chromatography (SIC) has already been consolidated as a good alternative of high performance liquid chromatography (HPLC) for fast analysis of simple samples. Benefits of flow methods are automation, miniaturization and low sample and mobile phase consumption. Implementation of short monolithic chromatographic column into SIA opens new area—on-line chromatographic separation of multi-compound sample in low-pressure flow system, with the advantage of flow programming and possibility of sample manipulation. In the presented review the potential of SIC and its comparison with HPLC for determination of pharmaceutical mixtures is discussed and outlines past and recent trends focused on separation with SIC.  相似文献   

11.
Jesus JP  Suárez CA  Ferreira JR  Giné MF 《Talanta》2011,85(3):1364-1368
An analytical procedure for multiple standard additions of arsenic species using sequential injection analysis (SIA) is proposed for their quantification in seafood extracts. SIA presented flexibility for generating multiple specie standards at the ng mL−1 concentration level by adding different volumes of As(III), As(V), monomethylarsonic (MMA) and dimethylarsinic (DMA) to the sample. The mixed sample plus standard solutions were delivered from SIA to fill the HPLC injection loop. Subsequently, As species were separated by HPLC and analyzed by atomic fluorescence spectrometry (AFS). The proposed system comprised two independently controlled modules, with the HPLC loop acting as the intermediary device. The analytical frequency was enhanced by combining the actions of both modules. While the added sample was flowing through the chromatographic column towards the detection system, the SIA program started performing the standard additions to another sample. The proposed method was applied to spoiled seafood extracts. Detection limits based on 3σ for As(III), As(V), MMA and DMA were 0.023, 0.39, 0.45 and 1.0 ng mL−1, respectively.  相似文献   

12.
The on-line coupling of sequential injection analysis (SIA) and capillary electrophoresis (CE) via an in-line injection valve is presented. The SIA system is used for automated derivatization of amino acids and peptides. Dichlorotriazinylaminofluorescein serves as the derivatization agent, thus enabling sensitive laser-induced fluorescence detection of the derivatized analytes. The SIA procedure includes the following steps: (a) introduction of reagent and sample zones in a holding coil, (b) sample and reagent mixing in a reaction coil, (c) stop-flow step for increase of the reaction time, and (d) delivery of derivatized sample into the loop of the micro-valve interface. A small portion of the analyte zone is introduced electrokinetically in the separation capillary via the valve interface and CE analysis is performed. Factors affecting the CE separation, such as pH, the borate and sodium dodecyl sulphate concentration of the background electrolyte have been optimized. The derivatization conditions have been studied to obtain a high reaction yield in a relative short time. The transfer of a part of the reaction plug into the loop of the valve interface has been optimized. Using des-Tyr(1)-[Met]-enkephalinamide as test compound, it is demonstrated that after automated derivatization, on-line electrophoretic analysis could be achieved. Glycine has been selected as the internal standard in order to correct for variations in reaction time and filling of the injection loop. For the enkephalin, good reproducibility (RSD<4.5% calculated by the ratio of the peak areas) and linearity (0.5-5 microg mL(-1), R(2)>or=0.994) are obtained with a detection limit of 30 ng mL(-1) (S/N=3).  相似文献   

13.

Background  

Despite its potential benefits over univariate, chemometrics is rarely utilized for optimizing sequential injection analysis (SIA) methods. Specifically, in previous vis-spectrophotometric SIA methods, chemometrically optimized conditions were confined within flow rate and reagent concentrations while other conditions were ignored.  相似文献   

14.
The robustness of sequential injection analysis (SIA) was combined with the monosegmented flow analysis (MSFA) approach, in which there is no dispersion of the reaction zone with carrier, to develop a methodology to perform in-line dilution. This approach allows one to know accurately the dilution of sample and reagent inside the monosegment, without the need for determination of dispersion coefficients. As a consequence, the methodology allowed the mechanization of procedures to perform standard additions and to construct analytical curves using a single stock standard solution, with very simple and conventional computation of the sample concentration. The method was illustrated with experiments using the bromothymol blue (BTB) dye, in which no reactions are involved, as well as with the spectrophotometric methodology for determination of Fe(II) using o-1,10-phenanthroline as chromogenic reagent. The resulting method presented a sampling frequency of 30 analyses per hour and a detection limit of 25 μg l−1.  相似文献   

15.
We report a method for determining total chromium in tanning samples using sequential injection analysis (SIA) with a diode-array spectrophotometric detector. With a suitable analytical sequence CrO42– is converted to Cr2O72– inside the tubes of the SIA system, after total oxidation of chromium(III). A data matrix is obtained and analysed by several chemometric techniques based on multivariate analysis: principal components analysis, simple-to-use interactive self-modelling mixture analysis, and multivariate curve resolution-alternating least-squares. We studied several samples from different stages of a tanning process. Two of these samples were easily oxidized but the others needed more extreme conditions. The analytical sequence prepared, which was based on obtaining a pH gradient and used H2SO4 as reagent, is valid and independent of the level of oxidation needed for the sample. We established a calibration model and evaluated the figures of merit. In some samples we found interferents. With this method the amounts of chromium in each sample were quantified and the results were statistically similar to those obtained by use of the reference method, atomic absorption spectrometry.  相似文献   

16.
A simple sequential injection analysis (SIA) with spectrophotometric detection for an assay of acidity in fruit juice was investigated. An alkaline reagent (sodium hydroxide), a sample and an indicator (phenolphthalein) were first aspirated and stacked as adjacent zones in a holding coil. With flow reversal through a reaction coil to the detector, zone penetration occurred, leading to a neutralization reaction that caused a decrease in the color intensity of the indicator being monitored for absorbance at 552 nm. The effects of various parameters were studied. Linear calibration graphs for acidities of 0.2 - 1.0 and 0.5 - 2.5% w/v citric acid as a standard, with a relative standard deviation of 1% (acidity of 0.3 - 0.6% w/v as citric acid, n=11) and a sample throughput of 30 samples h(-1), were achieved. The developed method was validated by a standard titrimetric method for assaying the acidity of fruit juice samples.  相似文献   

17.
Andrade MG  Ferreira SL  Santos BF  Costa AC 《Talanta》1992,39(10):1229-1232
A flow-injection method has been developed for the sequential spectrophotometric determination of iron and titanium using 3,4 dihydroxybenzoic acid as chromogenic reagent. The system involves the sequential measurement of the absorbances of the complexes at 380 and 570 nm. The system is designed using a simultaneous injection of sample and reagent into separate carrier streams. The proposed method is characterized by a precision of about 2%, a sampling rate of about 50 samples per hour, and a reagent consumption of 200 mul (0.50% solution) per sample. It is relatively free of interferences and was used for the sequential determination of titanium and iron in rocks.  相似文献   

18.
A commercially available porous silica rod column was used as a separation tool for the sequential injection analysis (SIA). A porous solid monolithic column showed high performance at a low pressure, allowing sequential injection analysis to be used for the first time for separation in HPLC fashion. In this contribution, we tried to demonstrate a new separation concept with SIA manifold for the simultaneous determination of four different compounds (methylparaben (MP), propylparaben (PP), triamcinolone acetonide (TCA) and internal standard ketoprofen (KP)) in a pharmaceutical triamcinolon cream 0.1% formulation. A Chromolith Flash RP-18e, 25 mm x 4.6 mm column with a 10 mm pre-column (Merck, Germany) and a FIAlab 3000 system (USA) with an 8-port selection valve and 10 ml syringe were used for sequential injection chromatographic separations in our study. The mobile phase used was acetonitrile-methanol-water (35:5:65, v/v/v) + 0.05% nonylamine, pH 2.5, flow rate 0.6 ml min(-1). The analysis time was <6 min. A novel sequential injection chromatography (SIC) technique with UV spectrophotometric detection was optimised and validated.  相似文献   

19.
A new software-controlled time-based system for sample or reagent introduction in process flow injection analysis was developed. By using a multi-syringe burette coupled with one multi-port selection valve, the time-based injection of precise known volumes was accomplished. Characteristics and performance of the injection system were studied by injecting an indicator in a buffered carrier. Two multi-syringe time-based injection (MS-TBI) systems were implemented: first, the injection of a sample in a multiple-channel manifold where the sample would sequentially merge and react with different reagents, and second, the sequential injection of several solutions (sample and reagents) into a particular flowing stream. The first system was applied to the spectrophotometric determination of nickel(II) in diluted samples from the acidic nickel ore leaching process, by using ammonium citrate as carrier, a saturated solution of iodine as oxidizing agent and alkaline dimethylglyoxime as chromogenic reagent. The sampling frequency attained was 57 h-1. Determinations on process samples compared well at the 95% confidence level with the reference values obtained by ICP-OES. The second time-based injection system was applied to the speciation of iron. Total iron and iron(II) concentrations were separately and sequentially determined using 1,10-phenanthroline in acetic buffer medium as reagent. The developed manifold allowed the optional use of two different carrier solutions, containing or not containing ascorbic acid, for performing the separate determinations. Also, in the sequential procedure, plugs of reducing carrier were alternatively intercalated before the sample injections used for total iron determinations. Sampling frequencies of 68 injections per hour were routinely used. Accuracy was assessed by analyzing synthetic known mixtures of Fe(III) and Fe(II) standard solutions. Recoveries of 98-100.5% with a maximum relative standard deviation of 3.6% were found. Results obtained for various samples of fertilizers agreed well with those attained by the standard batch procedure.  相似文献   

20.
A microfabricated electroosmotic pump with an integrated serpentine isolation channel was developed on a glass chip and applied to a capillary-based sequential injection analysis (SIA) system for an enzyme inhibition assay. The pump chip contains an anode reservoir, an ion-exchange membrane electric field decoupler (EFD) that also serves as a cathode reservoir, parallel pump channels and an isolation channel. A two-step etching process was adopted to etch the pump channels to a depth of 20 μm and the isolation channel to a depth of 90 μm. The pump flow rate was very stable: the relative standard deviation (RSD) of the pump rate was 1.9% for propulsion and 2.3% for aspiration. The pump chip was successfully applied to a capillary-based sequential injection analysis system with a confocal fluorescence detector. For repetitive analysis of a 13 μM fluorescein solution, an RSD of 0.6% was attained, which demonstrated the flow stability of the EOF pump. The system was then applied to an enzyme inhibition assay, the diethylenetriaminepentaacetic acid (DTPA) inhibition of the β-galactosidase-catalyzed hydrolysis of fluorescein di(β-d-galactopyranoside). Reproducible results (RSD<3.0%) were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号