首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have developed ultrabroadband (>2000 cm(-1)) multiplex coherent anti-Stokes Raman scattering (CARS) spectroscopy using a subnanosecond (sub-ns) microchip laser source. A photonic crystal fiber specifically designed for sub-ns supercontinuum (SC) generation has been used for obtaining ultrabroadband Stokes radiation, which enables us to achieve simultaneous vibrational excitation in the range from 800 to 3000 cm(-1). We have successfully obtained multiplex CARS spectra for several molecular liquids. Since the CARS system using the sub-ns SC is simple and compact, it can be easily applied to ultrabroadband multiplex CARS microspectroscopy.  相似文献   

2.
Lee YJ  Liu Y  Cicerone MT 《Optics letters》2007,32(22):3370-3372
We demonstrate that a broadband coherent anti-Stokes Raman scattering (CARS) spectrum generated with a typical two-pulse scheme contains two distinct, significant signals: '2-color' CARS, where the pump and probe are provided by a narrowband pulse and the continuum pulse constitutes the Stokes light, and '3-color' CARS, where the pump and Stokes are provided by two different frequency components in the continuum pulse and the narrowband pulse serves as the probe. The CARS spectra from the two different mechanisms show distinct characteristics in Raman shift range, laser power dependence, and chirping dependence. We discuss the potential for a 3-color CARS signal to cover the fingerprint region with reduced photodamage of live cells. Official contribution of the National Institute of Standards and Technology; not subject to copyright in the United States.  相似文献   

3.
Wang K  Xu C 《Optics letters》2011,36(21):4233-4235
We demonstrate a two-color, fiber-delivered picosecond source for coherent Raman scattering (CRS) imaging. The wavelength-tunable picosecond pump is generated by nonlinear spectral compression of a prechirped femtosecond pulse from a mode-locked titanium:sapphire (Ti:S) laser. The 1064?nm picosecond Stokes pulse is generated by an all-fiber time-lens source that is synchronized to the Ti:S laser. The pump and Stokes beams are combined in an optical fiber coupler, which serves not only as the delivery fiber but also as the nonlinear medium for spectral compression of the femtosecond pulse. CRS imaging of mouse skin is performed to demonstrate the practicality of this source.  相似文献   

4.
We demonstrate time-resolved coherent anti-Stokes Raman scattering (CARS) by using a frequency-tunable femtosecond soliton output of a silica photonic-crystal fiber (PCF) as a Stokes field. This approach allows quantum beats originating from two close Raman modes to be resolved in the time-domain CARS response. The nonresonant CARS background is efficiently suppressed by introducing a delay time between the probe pulse and the pump-Stokes pulse dyad, suggesting a convenient fiber-optic format for the Stokes source in time-resolved CARS and allowing sensitivity improvement in PCF-based CARS spectroscopes and microscopes.  相似文献   

5.
Subnanosecond supercontinuum (SC) has been generated by a 1,064 nm microchip laser combined with a photonic crystal fiber. The ultrabroadband (>2,000 cm(-1)) SC has facilitated multiplex coherent anti-Stokes Raman scattering (CARS) microspectroscopy in the spectral range from 1,000 to 3,000 cm(-1) with lateral and depth spatial resolution of 0.9 and 4.6 microm, respectively. A clear CARS image of a Nicotiana tabacum L. cv. Bright Yellow 2 cell has been obtained with high vibrational contrast.  相似文献   

6.
We study the effects related to two-photon absorption (TPA) in the microspectroscopy of the silicon photonic components based on coherent anti-Stokes Raman scattering (CARS) of femtosecond pulses. With 300-fs pulses of 1.24-μm Cr:forsterite laser radiation delivering pump and probe fields and a frequency-shifted soliton output of a large-mode area photonic-crystal fiber employed as a Stokes field, pronounced TPA effects have been observed in the CARS microspectroscopy of silicon components for pump-pulse intensities exceeding 10 GW/cm2.  相似文献   

7.
Coherent anti-Stokes Raman scattering (CARS) microspectroscopy of silicon components is demonstrated with pump and probe fields delivered by a mode-locked Cr:forsterite laser and the frequency-shifted soliton output of a photonic-crystal fiber as a Stokes field. CARS microspectroscopy is shown to allow a visualization of microscale features and defects on the surface of silicon wafers, offering much promise for online diagnostics of electronic and photonic silicon chip components.  相似文献   

8.
We demonstrate a scheme for efficient coherent anti-Stokes Raman scattering (CARS) microscopy free of nonresonant background. Our method is based on a compact Er:fiber laser source. Impulsive excitation of molecular resonances is achieved by an 11 fs pulse at 1210 nm. Broadband excitation gives access to molecular resonances from 0 cm(-1) up to 4000 cm(-1). Time-delayed narrowband probing at 775 nm enables sensitive and high-speed spectral detection of the CARS signal free of nonresonant background with a resolution of 10 cm(-1).  相似文献   

9.
To achieve high-spectral-resolution multiplex coherent anti-Stokes Raman scattering (CARS), one typically uses a narrowband pump pulse and a broadband Stokes pulse. This is to ensure a correspondence between anti-Stokes and vibrational frequencies. We obtain high-resolution CARS spectra of isopropanol, using a broadband chirped pump pulse and a broadband Stokes pulse, by detecting the anti-Stokes pulse with spectral interferometry. With the temporally resolved anti-Stokes signal, we can remove the chirp of the anti-Stokes pulse and restore high spectral resolution while also rejecting nonresonant scattering.  相似文献   

10.
Broadband normal dispersion pumping supercontinuum (SC) generation in silica photonic crystal fiber (PCF) is investigated in this paper. A 1064-nm picosecond fiber laser is used to pump silica PCF for the SC generation. The length of PCF is optimized for the most efficient stimulated Raman scattering process in the picosecond pump pulse region. The first stimulated Raman Stokes peak is located in the anomalous dispersion regime of the PCF and near the zero dispersion wavelength; thus the SC generation process can benefit from both a normal dispersion pumping scheme and an anomalous dispersion pumping scheme. The 51.7-W SC spanning from about 700 nm to beyond 1700 nm is generated with an all-fiber configuration, and the pump-to-SC conversion efficiency is up to 90%. In order to avoid the output fiber end face damage and increase the stability of the system, an improved output solution for the high power SC is proposed in our experiment. This high-efficiency near-infrared SC source is very suitable for applications in which average output power and spectral power density are firstly desirable.  相似文献   

11.
采用钛宝石飞秒激光器输出的一部分光抽运光子晶体光纤以产生超连续光谱,作为抽运光和斯托克斯光,另一部分飞秒激光作为探测光,并结合时间延迟方法,建立超连续光谱激发时间分辨相干反斯托克斯拉曼散射(CARS)实验系统,测试了具有较宽拉曼光谱的二甲基亚砜样品.实验结果表明,所建立的实验系统能有效抑制非共振背景噪声,并且通过一次测量,即可获得二甲基亚砜在690—3200cm-1范围内的CARS光谱信息,获得的二甲基亚砜CARS光谱范围达到2500cm-1.同时给出了所采用的光子晶体光纤光谱展宽的实验结果.  相似文献   

12.
An optical parametric oscillator (OPO), as a novel kind of broadband Stokes source, is employed for coherent anti-Stokes Raman spectroscopy (CARS). Compared to the conventional dye laser configuration OPO-CARS offers practical advantages. The tunable OPO allows a fast and comfortable frequency tuning. The excitation bandwidth of about 35 cm–1 (FWHM) limits the spectral range of effective and stable single pulse CARS generation but can be used to enhance selected spectral structures.  相似文献   

13.
We report all-UV coherent anti-Stokes Raman scattering (CARS) in calcite with 250-280 nm pump, Stokes, probe, and anti-Stokes light. UV CARS efficiency is approximately 7x higher than for comparable scattering in the visible, 480-540 nm. Time-resolved UV CARS reveals lengthening of the dephasing time of 1086 cm(-1) CO3(2-) internal vibrations from 4 to 7 ps with increasing vibrational excitation, consistent with a phonon depletion model.  相似文献   

14.
Hollow-core photonic-crystal fibers (PCFs) provide soliton delivery and frequency shifting of 2.8 MW femtosecond pulses with an input central wavelength of 618 nm. The frequency-shifted megawatt soliton output of the hollow PCF is used as a high-peak-power Stokes field for coherent anti-Stokes Raman scattering (CARS) microspectroscopy, providing a dynamic range of nearly four decades for anti-Stokes signal detection, thus enabling time-resolved CARS studies of ultrafast relaxation processes on time scales from tens of femtoseconds up to tens of picoseconds.  相似文献   

15.
Coherent anti-Stokes Raman scattering (CARS) and normal anti-Stokes Raman scattering (NARS) have been measured in (001) GaP at room temperature due to the 403 cm−1 LO phonons using a continuous wave (CW) 785.0 nm fixed-wavelength pump laser and a CW Stokes laser tunable in the 800-830 nm wavelength range. CARS measurements are normally made using pulsed lasers. The use of CW diode lasers allows a more accurate comparison between the measured and calculated values of the CARS signal. The pump and Stokes laser beams were linearly polarized perpendicular to each other, same as the pump and normal Stokes/anti-Stokes scattered light for the GaP sample used in this work. The pump and Stokes laser powers incident upon the GaP sample, located in the focal plane of a 20 mm effective focal length lens, were <20 and 50 mW, respectively. The diameter of the laser beams in the focal plane of the focusing lens was determined to 40±5 μm. The pump and Stokes laser beam intensities incident upon the 0.3 mm thick GaP sample were <2 and 5 kW cm2, respectively. The powers of the CARS and NARS signals were measured using a Raman spectrometer. The signal output of the Raman spectrometer was calibrated using the pump laser and several neutral density filters. The Raman linewidth (full-width at half-maximum) of the LO phonons was determined to be 0.95±0.05 cm−1, using the variation of the CARS signal with the wavelength of the Stokes laser. The measured powers of the CARS and NARS signals are about a factor of 5 and 1.5, respectively, smaller than those calculated from the corresponding theoretical expressions.  相似文献   

16.
Nonlinear vibrational spectroscopy using a single beam of femtosecond pulses from an unamplified fibre laser oscillator is demonstrated. To achieve high spectral resolution and sensitive signal detection with the picojoule pulse energies available, pulse shaping and integrated interferometric detection is employed. The spectroscopic technique used is coherent anti-Stokes Raman scattering (CARS), which yields well-resolved spectra of molecular vibrations in the 100–350 cm-1 domain of halomethane samples in the liquid phase. We explore the implications of phase control for the interferometric detection of weak signals. The presented combination of a fiber laser, pulse shaping and CARS microspectroscopy is a first example of simplified schemes for compact and robust nonlinear spectroscopic detection and sensing, which is demonstrated exemplarily by on-line monitoring of the chemical composition in a microfluidic flow cell. PACS 42.55.Wd; 42.62.Fi; 78.47.Fg; 42.65.Dr; 82.80.Gk; 92.20.cn  相似文献   

17.
Ganikhanov F  Evans CL  Saar BG  Xie XS 《Optics letters》2006,31(12):1872-1874
We demonstrate a new approach to coherent anti-Stokes Raman scattering (CARS) microscopy that significantly increases the detection sensitivity. CARS signals are generated by collinearly overlapped, tightly focused, and raster scanned pump and Stokes laser beams, whose difference frequency is rapidly modulated. The resulting amplitude modulation of the CARS signal is detected through a lock-in amplifier. This scheme efficiently suppresses the nonresonant background and allows for the detection of far fewer vibrational oscillators than possible through existing CARS microscopy methods.  相似文献   

18.
Roy S  Meyer TR  Gord JR 《Optics letters》2005,30(23):3222-3224
Broadband picosecond coherent anti-Stokes Raman scattering (CARS) spectroscopy of nitrogen is demonstrated using 145-ps pump and probe beams and a 115-ps Stokes beam with a spectral bandwidth of 5 nm. This is, to our knowledge, the first demonstration of broadband CARS using subnanosecond lasers. The short temporal envelope of the laser pulses and the broadband spectral nature of the Stokes beam will enable nonresonant-background-free, single-shot, or time-dependent spectroscopy in high-pressure or hydrocarbon-rich environments. Successful correlation of room-temperature broadband picosecond N2 CARS with a theoretical spectrum is presented.  相似文献   

19.
亚纳秒光脉冲抽运光子晶体光纤产生的瓦级超连续谱   总被引:1,自引:1,他引:0  
方平  杨直  王屹山  赵卫  张挺  李成 《光子学报》2010,39(3):446-449
研究了亚纳秒脉冲抽运光子晶体光纤产生高功率超连续谱的机理.采用掺镱锁模光纤激光器产生的脉宽570ps光脉冲,抽运1.8m光子晶体光纤,得到了平均功率为1.15W、光谱覆盖范围为750nm的超连续谱.通过实验和模拟结果的对比和分析,证实了亚纳秒脉冲抽运1.8m PCF产生超连续谱时,调制不稳定性效应起了重要作用.在研究了不同抽运功率下输出的超连续谱变化后,发现随着抽运功率的提高,输出功率也更高且超连续谱覆盖波段也更宽,在瓦级输出功率下依然未达到饱和展宽状态,还有进一步提高功率和展宽光谱的空间.  相似文献   

20.
A double-channel spectrometer, which enables to acquire ultrabroadband single-pulse spectra of liquids by Coherent Anti-Stokes Raman Spectroscopy (CARS), is described. The method used to fulfill the phase-matching condition is based on the fact that the CARS efficiency in dispersive media is the largest when the interactive waves cross each other under frequency-determined angles. The dependence of the spatial separation between the pump and Stokes beam, in front of the crossing CARS lens, due to their frequency difference is analysed. It is shown that the different spectral components of an ultrabroadband Stokes source have phase-matched the CARS process when they are laterally shifted by a conjugated prism pair and focused into the sample. The method is tested in the spectral region 2800–3800 cm–1 of a non-resonant medium (CCl4) using an ultrabroadband dye laser (1000 cm–1 FWHM). The influence of the Stokes beam spatial dispersion on the width of CARS generation is demonstrated. By this method, 1060 cm–1 wide single-pulse spectra of the OH stretching vibration of liquid water are obtained for the first time. The ratio between the resonant and non-resonant part of the third-order susceptibility in water and methanol is determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号