首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, we consider the box constrained nonlinear integer programming problem. We present an auxiliary function, which has the same discrete global minimizers as the problem. The minimization of the function using a discrete local search method can escape successfully from previously converged discrete local minimizers by taking increasing values of a parameter. We propose an algorithm to find a global minimizer of the box constrained nonlinear integer programming problem. The algorithm minimizes the auxiliary function from random initial points. We prove that the algorithm can converge asymptotically with probability one. Numerical experiments on a set of test problems show that the algorithm is efficient and robust.  相似文献   

2.
In this study, a two-stage fuzzy robust integer programming (TFRIP) method has been developed for planning environmental management systems under uncertainty. This approach integrates techniques of robust programming and two-stage stochastic programming within a mixed integer linear programming framework. It can facilitate dynamic analysis of capacity-expansion planning for waste management facilities within a multi-stage context. In the modeling formulation, uncertainties can be presented in terms of both possibilistic and probabilistic distributions, such that robustness of the optimization process could be enhanced. In its solution process, the fuzzy decision space is delimited into a more robust one by specifying the uncertainties through dimensional enlargement of the original fuzzy constraints. The TFRIP method is applied to a case study of long-term waste-management planning under uncertainty. The generated solutions for continuous and binary variables can provide desired waste-flow-allocation and capacity-expansion plans with a minimized system cost and a maximized system feasibility.  相似文献   

3.
In this paper, we review recent advances in the distributional analysis of mixed integer linear programs with random objective coefficients. Suppose that the probability distribution of the objective coefficients is incompletely specified and characterized through partial moment information. Conic programming methods have been recently used to find distributionally robust bounds for the expected optimal value of mixed integer linear programs over the set of all distributions with the given moment information. These methods also provide additional information on the probability that a binary variable attains a value of 1 in the optimal solution for 0–1 integer linear programs. This probability is defined as the persistency of a binary variable. In this paper, we provide an overview of the complexity results for these models, conic programming formulations that are readily implementable with standard solvers and important applications of persistency models. The main message that we hope to convey through this review is that tools of conic programming provide important insights in the probabilistic analysis of discrete optimization problems. These tools lead to distributionally robust bounds with applications in activity networks, vertex packing, discrete choice models, random walks and sequencing problems, and newsvendor problems.  相似文献   

4.
A multiobjective binary integer programming model for R&D project portfolio selection with competing objectives is developed when problem coefficients in both objective functions and constraints are uncertain. Robust optimization is used in dealing with uncertainty while an interactive procedure is used in making tradeoffs among the multiple objectives. Robust nondominated solutions are generated by solving the linearized counterpart of the robust augmented weighted Tchebycheff programs. A decision maker’s most preferred solution is identified in the interactive robust weighted Tchebycheff procedure by progressively eliciting and incorporating the decision maker’s preference information into the solution process. An example is presented to illustrate the solution approach and performance. The developed approach can also be applied to general multiobjective mixed integer programming problems.  相似文献   

5.
The simple integer recourse (SIR) function of a decision variable is the expectation of the integer round-up of the shortage/surplus between a random variable with a known distribution and the decision variable. It is the integer analogue of the simple (continuous) recourse function in two-stage stochastic linear programming. Structural properties and approximations of SIR functions have been extensively studied in the seminal works of van der Vlerk and coauthors. We study a distributionally robust SIR function (DR-SIR) that considers the worst-case expectation over a given family of distributions. Under the assumption that the distribution family is specified by its mean and support, we derive a closed form analytical expression for the DR-SIR function. We also show that this nonconvex DR-SIR function can be represented using a mixed-integer second-order conic program.  相似文献   

6.
This contribution gives an overview on the state-of-the-art and recent advances in mixed integer optimization to solve planning and design problems in the process industry. In some case studies specific aspects are stressed and the typical difficulties of real world problems are addressed. Mixed integer linear optimization is widely used to solve supply chain planning problems. Some of the complicating features such as origin tracing and shelf life constraints are discussed in more detail. If properly done the planning models can also be used to do product and customer portfolio analysis. We also stress the importance of multi-criteria optimization and correct modeling for optimization under uncertainty. Stochastic programming for continuous LP problems is now part of most optimization packages, and there is encouraging progress in the field of stochastic MILP and robust MILP. Process and network design problems often lead to nonconvex mixed integer nonlinear programming models. If the time to compute the solution is not bounded, there are already a commercial solvers available which can compute the global optima of such problems within hours. If time is more restricted, then tailored solution techniques are required.  相似文献   

7.
In this paper, we consider the two-stage minimax robust uncapacitated lot-sizing problem with interval uncertain demands. A mixed integer programming formulation is proposed. Even though the robust uncapacitated lot-sizing problem with discrete scenarios is an NP-hard problem, we show that it is polynomial solvable under the interval uncertain demand set.  相似文献   

8.
We develop technology to plan delivery routes for the supply of blood products to hospitals by a blood bank. The technology produces low cost, robust plans that hedge against the natural uncertainty associated with blood product usage at hospitals. The technology relies on sampling-based approaches involving integer programming and variable neighborhood search. An extensive computational study shows the efficacy of the two approaches and highlights the impact of product usage uncertainty on the resulting delivery plans.  相似文献   

9.
We present a Lagrangean decomposition to study integer nonlinear programming problems. Solving the dual Lagrangean relaxation we have to obtain at each iteration the solution of a nonlinear programming with continuous variables and an integer linear programming. Decreasing iteratively the primal—dual gap we propose two algorithms to treat the integer nonlinear programming.This work was partially supported by CNPq and FINEP.  相似文献   

10.
整数规划是对全部或部分决策变量为整数的最优化问题的模型、算法及应用等的研究, 是运筹学和管理科学中应用最广泛的优化模型之一. 首先简要回顾整数规划的历史和发展进程, 概述线性和非线性整数规划的一些经典方法. 然后着重讨论整数规划若干新进展, 包括0-1二次规划的半定规划~(SDP)~松弛和随机化方法, 带半连续变量和稀疏约束的优化问题的整数规划模型和方法, 以及0-1二次规划的协正锥规划表示和协正锥的层级半定规划~(SDP)~逼近. 最后, 对整数规划未来研究方向进行展望并对一些公开问题进行讨论.  相似文献   

11.
陈志平  郤峰 《计算数学》2004,26(4):445-458
针对现有分枝定界算法在求解高维复杂二次整数规划问题时所存在的诸多不足,本文通过充分挖掘二次整数规划问题的结构特性来设计选择分枝变量与分枝方向的新方法,并将HNF算法与原问题松弛问题的求解相结合来寻求较好的初始整数可行解,由此导出可用于有效求解中大规模复杂二次整数规划问题的改进型分枝定界算法.数值试验结果表明所给算法大大改进了已有相关的分枝定界算法,并具有较好的稳定性与广泛的适用性.  相似文献   

12.
We specify a variation of the weighting method for multi-criterion optimization which determines nondominated solutions to the bi-criterion integer programming problem. The technique makes use of imposed constraints based on nondominated points. For the bi-criterion case, we develop an algorithm which finds all nondominated points by solving a sequence of single-criterion integer programming problems. We present computational results for the linear 0–1 case and discuss the extension of our algorithm to the general multi-criterion integer programming problem.  相似文献   

13.
14.
We present branching-on-hyperplane methods for solving mixed integer linear and mixed integer convex programs. In particular, we formulate the problem of finding a good branching hyperplane using a novel concept of adjoint lattice. We also reformulate the problem of rounding a continuous solution to a mixed integer solution. A worst case complexity of a Lenstra-type algorithm is established using an approximate log-barrier center to obtain an ellipsoidal rounding of the feasible set. The results for the mixed integer convex programming also establish a complexity result for the mixed integer second order cone programming and mixed integer semidefinite programming feasibility problems as a special case. Our results motivate an alternative reformulation technique and a branching heuristic using a generalized (e.g., ellipsoidal) norm reduced basis available at the root node.  相似文献   

15.
Farkas’ Lemma is a foundational result in linear programming, with implications in duality, optimality conditions, and stochastic and bilevel programming. Its generalizations are known as theorems of the alternative. There exist theorems of the alternative for integer programming and conic programming. We present theorems of the alternative for conic integer programming. We provide a nested procedure to construct a function that characterizes feasibility over right-hand sides and can determine which statement in a theorem of the alternative holds.  相似文献   

16.
With the fast developments in product remanufacturing to improve economic and environmental performance, an environmental closed-loop supply (ECLSC) chain is important for enterprises' competitiveness. In this paper, a robust ECLSC network is investigated which includes multiple plants, collection centers, demand zones, and products, and consists of both forward and reverse supply chains. First, a robust multi-objective mixed integer nonlinear programming model is proposed to deal with ECLSC considering two conflicting objectives simultaneously, as well as the uncertain nature of the supply chain. Cost parameters of the supply chain and demand fluctuations are subject to uncertainty. The first objective function aims to minimize the economical cost and the second objective function is to minimize the environmental influence. Then, the proposed model is solved as a single-objective mixed integer programming model applying the LP-metrics method. Finally, numerical example has been presented to test the model. The results indicate that the proposed model is applicable in practice.  相似文献   

17.
本文考虑了一类特殊的多项式整数规划问题。此类问题有很广泛的实际应用,并且是NP难问题。对于这类问题,最优性必要条件和最优性充分条件已经给出。我们在本文中将要利用这些最优性条件设计最优化算法。首 先,利用最优性必要条件,我们给出了一种新的局部优化算法。进而我们结合最优性充分条件、新的局部优化算法和辅助函数,设计了新的全局最优化算法。本文给出的算例展示出我们的算法是有效的和可靠的。  相似文献   

18.
The zero-one integer programming problem and its special case, the multiconstraint knapsack problem frequently appear as subproblems in many combinatorial optimization problems. We present several methods for computing lower bounds on the optimal solution of the zero-one integer programming problem. They include Lagrangean, surrogate and composite relaxations. New heuristic procedures are suggested for determining good surrogate multipliers. Based on theoretical results and extensive computational testing, it is shown that for zero-one integer problems with few constraints surrogate relaxation is a viable alternative to the commonly used Lagrangean and linear programming relaxations. These results are used in a follow up paper to develop an efficient branch and bound algorithm for solving zero-one integer programming problems.  相似文献   

19.
 We consider stochastic programming problems with probabilistic constraints involving random variables with discrete distributions. They can be reformulated as large scale mixed integer programming problems with knapsack constraints. Using specific properties of stochastic programming problems and bounds on the probability of the union of events we develop new valid inequalities for these mixed integer programming problems. We also develop methods for lifting these inequalities. These procedures are used in a general iterative algorithm for solving probabilistically constrained problems. The results are illustrated with a numerical example. Received: October 8, 2000 / Accepted: August 13, 2002 Published online: September 27, 2002 Key words. stochastic programming – integer programming – valid inequalities  相似文献   

20.
Robust discrete optimization and network flows   总被引:17,自引:0,他引:17  
We propose an approach to address data uncertainty for discrete optimization and network flow problems that allows controlling the degree of conservatism of the solution, and is computationally tractable both practically and theoretically. In particular, when both the cost coefficients and the data in the constraints of an integer programming problem are subject to uncertainty, we propose a robust integer programming problem of moderately larger size that allows controlling the degree of conservatism of the solution in terms of probabilistic bounds on constraint violation. When only the cost coefficients are subject to uncertainty and the problem is a 0–1 discrete optimization problem on n variables, then we solve the robust counterpart by solving at most n+1 instances of the original problem. Thus, the robust counterpart of a polynomially solvable 0–1 discrete optimization problem remains polynomially solvable. In particular, robust matching, spanning tree, shortest path, matroid intersection, etc. are polynomially solvable. We also show that the robust counterpart of an NP-hard -approximable 0–1 discrete optimization problem, remains -approximable. Finally, we propose an algorithm for robust network flows that solves the robust counterpart by solving a polynomial number of nominal minimum cost flow problems in a modified network. The research of the author was partially supported by the Singapore-MIT alliance.The research of the author is supported by a graduate scholarship from the National University of Singapore.Mathematics Subject Classification (2000): 90C10, 90C15  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号