首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
木质素改性高分子材料研究进展   总被引:16,自引:0,他引:16  
木质素改性高分子材料的基础研究和应用开发极为活跃.在材料中引入木质素,不仅可提高材料的性能,还能降低成本,产生可观的经济效益.本文综述了木质素改性高分子材料的最新研究成果,并由此归纳出木质素结构与材料性能之间的关系,提出了基于控制木质素多级结构的材料设计和性能优化的思路.  相似文献   

2.
木质素在橡胶中的应用研究进展   总被引:1,自引:0,他引:1  
木质素是地球上最丰富的生物材料之一,其基本单元为9-碳苯酚丙烷(香豆醇、松柏醇和芥子醇),这些单元通过不同类型的键连接在一起形成一个多酚类芳香族聚合物。作为造纸工业的主要废弃物,木质素成本低廉,目前主要用作低附加值的燃料,其开发价值还没有得到充分利用。将木质素用于填充改性橡胶既经济又环保,其不仅有补强的效果,还有偶联、抗氧防老、阻燃的作用,可部分代替炭黑。本文将对木质素的改性、橡胶/木质素复合材料的制备方法及研究进展进行综述,并对橡胶/木质素复合材料研究的挑战和机遇进行了展望。  相似文献   

3.
木质素在高分子材料中的应用   总被引:5,自引:0,他引:5  
楼涛  汪学军 《高分子通报》1996,(4):240-242,255
本文简要介绍了木质素的结构及其在衙种高分子材料的应用和开发前景。  相似文献   

4.
木质素活化改性制备酚醛树脂胶黏剂研究进展   总被引:1,自引:0,他引:1  
木质素由于化学结构与苯酚相似,通过活化改性可部分替代苯酚制备木质素改性酚醛树脂胶黏剂。既可降低成本、达到生物质资源高效利用的目的,并且制备的木质素改性酚醛树脂胶黏剂有毒残余较低,具有环保意义,是合成制备生物质高分子材料的重要途径。本文综述了国内外研究人员在木质素活化改性制备酚醛树脂胶黏剂研究领域的最新进展,重点介绍了化学改性、物理改性、生物改性等木质素活化改性方法,比较了不同改性产物制备酚醛树脂胶黏剂的性能,并对影响木质素活化改性制备酚醛树脂胶黏剂实现工业化应用的主要因素进行了分析。  相似文献   

5.
基于纤维素的先进功能材料   总被引:4,自引:0,他引:4  
收集整理了近几年间发表在国内外重要期刊上的约360篇文献,以纤维素功能材料的制备方法为线索,简要综述了该领域的最新进展,对纤维素基纤维材料、膜材料、光电材料、杂化材料、智能材料、生物医用材料等功能材料的制备过程、功能和应用前景做了概括性描述.  相似文献   

6.
木质素是一种在自然界中含量高的天然高分子物质,其分子中含有大量的羟基.目前国内所开发的木质素产品已经有数百种,但由于木质素本身结构复杂、种类繁多,使得开发的木质素产品基本还停留在较为初级的阶段,且存在一定的盲目性.纳米材料的比表面积大,表面活性高,将木质素加工到纳米级别能有效地改善其一部分基本特性.文章结合木质素本身的特点和近年来对木质素的深入研究,分别从微粒、薄膜、纤维三方面介绍了木质素在纳米材料领域的研究现状和应用前景.  相似文献   

7.
朱莉娜  廖代正 《结构化学》2003,22(2):125-132
网络拓扑方法是新近在晶体工程中使用的一种直观有效的策略,它使复杂的晶体结构设计简化为分子拓扑结构的组建。本文介绍了这一方法的基本思路,以及它在设计组装各种光、电、磁、离子交换、催化等新型功能材料中的应用。  相似文献   

8.
木质素作为一种大量存在的可再生资源,具有巨大的应用潜力。近年来,木质素资源的高效利用问题引起了人们的广泛关注。本文综述了近几年来国内外木质素资源利用的研究状况,简要介绍了木质素利用的两种方式:大分子形式利用以及液化降解利用。重点介绍了木质素液化降解制备生物油及酚类化合物的国内外研究现状,并对液化降解机理进行了阐述。最后,总结了当前木质素资源利用存在的问题,提出了未来木质素利用的研究方向,展望了木质素的发展前景。  相似文献   

9.
木质素及其在高分子材料方面的利用课程教学方法与实践   总被引:1,自引:0,他引:1  
木质素是一种重要的天然高分子,其开发利用已成为材料科学的热点之一。木质素及其在高分子材料方面的利用课程内容涉及木质素的结构与性质、木质素化学品、木质素热固性材料、木质素热塑性材料、木质素新材料、木质素材料的性能评价等。针对该门课程知识点多且内容分散、知识面宽、知识点新的特点,提出了教学方法:(1)采用案例教学法,密切联系生产实践;(2)采用翻转课堂教学法,提高学生自学能力;(3)加强双语教学,培养国际化专业人才;(4)采用灵活有效的考核方式,着实提高学生综合能力。  相似文献   

10.
木质素酶及其化学模拟的研究进展   总被引:20,自引:0,他引:20  
张建军  罗勤慧 《化学通报》2001,64(8):470-477
木质素酶(包括木质素过氧化物酶和锰木质素过氧化物酶)及其模拟物对木质素的催化降解是绿色化学的一个重要研究课题。本文综述了近年来有关木质素酶的分子结构,活性中心结构、催化木质降解机理及模型物的研究进展。  相似文献   

11.
Cultural Heritage is a crucial socioeconomic resource; yet, recurring degradation processes endanger its preservation. Serendipitous approaches in restoration practice need to be replaced by systematically addressing conservation issues through the development of advanced materials for the preservation of the artifacts. In the last few decades, materials and colloid science have provided valid solutions to counteract degradation, and we report here the main highlights in the formulation and application of materials and methodologies for the cleaning, protection and consolidation of works of art. Several types of artifacts are addressed, from murals to canvas paintings, metal objects, and paper artworks, comprising both classic and modern/contemporary art. Systems, such as nanoparticles, gels, nanostructured cleaning fluids, composites, and other functional materials, are reviewed. Future perspectives are also commented, outlining open issues and trends in this challenging and exciting field.  相似文献   

12.
刘江红  魏晓航  薛健 《化学通报》2019,82(3):209-213
介孔材料是一种具有较大比表面积和高度有序孔道结构的材料,而功能化介孔材料是将介孔材料改性而使其具有不同的功能。这种材料由于具有极好的吸附和催化性能而被广泛应用于环境领域中。本文总结了功能化介孔材料的制备方法,包括引入官能团、掺杂金属和酸改性;探讨分析了几种制备方法下的功能化介孔材料的特点和应用前景;重点介绍了功能化介孔材料在吸附重金属、有机污染物、染料、CO2以及催化领域的研究进展;最后展望了未来功能化介孔材料的应用前景和发展趋势,以期为功能化介孔材料的发展提供参考和指明方向。  相似文献   

13.
翟景琳  胡欣  刘成扣  朱宁  郭凯 《化学进展》2019,31(9):1293-1302
木质素是仅次于纤维素的第二大生物质资源, 是自然界中唯一的可再生芳香族化合物资源。长久以来, 木质素的难以充分利用是掣肘生物化工产业的一个重大问题。近年来, 原子转移自由基聚合接枝改性成为木质素高值化利用的一个重要方法, 可制备获得不同结构、性能各异的木质素接枝改性材料。本文从单体种类、催化剂、材料的结构与性能等方面, 介绍了原子转移自由基聚合接枝改性木质素的研究进展, 并对该领域的发展前景与挑战进行了探讨。  相似文献   

14.
Lignin is a biopolymer and one of the main constituents of woody plants where it plays the role of lining agent and is comparable in this respect to cement in steel reinforced concrete. Polymer nanocomposites containing biopolymers such as cellulose, lignin, starch, proteins, etc. are the object of recent numerous studies and are known also as bio-nanocomposites. This paper deals with lignin use in various polymer nanocomposites. It presents the preparation and uses of nanolignin as a filler and lignin uses as a matrix or a matrix component in polymer nanocomposites.  相似文献   

15.
秦国富  刘一寰  尹帆  胡欣  朱宁  郭凯 《化学进展》2020,32(10):1547-1556
作为自然界储量丰富的生物质资源之一,木质素尚未得到充分利用,成为掣肘生物化工发展的挑战。利用木质素丰富的功能基团进行接枝聚合改性,已成为木质素高值化利用的一个重要途径。开环聚合是一种温和、高效的聚合方法,可以将脂肪族聚酯链段引入到木质素中,提高材料的溶解性、相容性和可降解性,拓展木质素的应用范围。本文关注多催化条件下丙交酯、己内酯等环状单体通过开环聚合对木质素进行接枝改性的研究进展,同时对木质素改性材料的性能、应用以及发展前景进行了探讨。  相似文献   

16.
张乾坤  梁海欧  白杰  李春萍 《化学通报》2023,86(10):1181-1187
CdS因其具有较窄的带隙宽度、合适的能带位置和宽范围的可见光吸收等特点被广泛应用于可见光催化领域,然而CdS材料应用于实际生产仍然十分困难,纯的CdS光生载流子复合快、活性位点少、光腐蚀严重等问题亟待解决。本文总结了近几年具有优异光催化性能的CdS基复合材料设计案例,阐述了催化剂改性的原理,主要以加速电荷转移、提升电荷分离效率、产生更多的光生载流子为改性策略,并结合实际研究着重分类讨论了设计不同种类的异质结(如p-n型异质结、肖特基结、Z型异质结)、构建同质结和缺陷工程等手段应用于CdS基光催化剂的改性。最后对未来CdS基光催化剂的研究方向和可能面临的挑战做出了展望,以期望CdS基光催化剂广泛应用于实际生产生活中。  相似文献   

17.
纳米晶体材料研究进展   总被引:25,自引:0,他引:25  
综述了目前纳米晶体材料合成、结构、性质和应用的研究和发展现状。通过惰性气体凝结、机械合金、等离子体技术和其他许多方法可以制得纳米晶体材料。尽管早期的研究者认为纳米晶体材料的晶粒边界结构不同于常规材料, 但目前有关纳米晶体材料结构的研究表明其具有与常规晶体材料相同的晶粒边界结构。纳米晶体材料所具有的诸如扩散和烧结、力学、陶瓷和金属间化合物的延展性、电学、热膨胀、光学、磁学、催化和腐蚀行为等性质优于常规多晶材料, 这些性质具有巨大的潜在应用价值。  相似文献   

18.
Improving the environmental performance of resins in wood treatment by using renewable chemicals has been a topic of interest for a long time. At the same time, lignin, the second most abundant biomass on earth, is produced in large scale as a side product and mainly used energetically. The use of lignin in wood adhesives or for wood modification has received a lot of scientific attention. Despite this, there are only few lignin-derived wood products commercially available. This review provides a summary of the research on lignin application in wood adhesives, as well as for wood modification. The research on the use of uncleaved lignin and of cleavage products of lignin is reviewed. Finally, the current state of the art of commercialization of lignin-derived wood products is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号