首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary A synthesis of [RhH{P(OPh)3}4] (1) from [Rh(acac){P(OPh)3}2] or [Rh(acac)(CO)2] has been developed. The reaction of theortho-metallated complex (2) with H2, leading to (1) is described.  相似文献   

2.
Summary Theortho-metallated complex [RhP3Pt] [P=P(OPh)3, P=P(OC6H4)(OPh)2] was obtained in the reaction of [RhP4]ClO4 with KOH. It reacts easily with proton donors HX (X=ClO4, F, Cl, SCN, or acetylacetonate) to produce complexes [RhP3X] when X is a strong donor. If X is a weaker donor (X=ClO4 or F), pentacoordinate compounds of the type [PhP4X] are formed. [RhP3P] reacts with acetylacetone (Hacac) to produce [Rh(acac)P2].  相似文献   

3.
The reactions of Rh(acac)[P(OPh)3]2 with H2, CO and olefins have been investigated using UV-VIS, IR, 1H and 31P NMR techniques. In the presence of H2 and free phosphite, Rh(acac)P2 produces HRhP4, which was shown to catalyse isomerization reactions of olefins. Addition of CO to HRhP4 produces HRh(CO)P3, which is a good hydroformylation catalyst. The latter hydride can also be obtained directly from the starting complex in the presence of H2, CO and free phosphite. No evidence for the formation of any hydride complexes could be found in the absence of free phosphite. The results are discussed with reference to earlier studies performed on these systems.  相似文献   

4.
Summary The [Rh(acac){P(OPh)3)}2] complex (Hacac = 2,4-pentadione) reacts in solution with gaseous HCN in the presence of P(OPh)3 to give [Rh{P(OPh)3}3CN]. Structural investigations of this complex including its31P n.m.r. spectra are reported.  相似文献   

5.
Treatment of [Rh2Cl2(CO)2 {μ-(PhO)2PN(Et)P(OPh)2}2] with various reducing agents gives a number of products, the type depending on the conditions employed. The products isolated include [Rh2(CO)2{μ-(PhO)2PN(Et)P(OPh)2}2], [Rh2(CO)3{μ-(PhO)2PN(Et)P(OPh)2}2],and [Rh2HgCl(μ-H)(CO)2{μ-(PhO)2PN(Et)P(OPh)2}2]; the structure of the last complex was determined by X-ray diffraction.  相似文献   

6.
The synthesis and properties of complexes of general formulae [Rh(Pz)(CO)L]2 (Pz = pyrazolate ion, L = phosphorus donor ligand), [Rh(Pz)(diolefin)]2 and [Rh(Pz)(C2H4)2]2 are reported. The crystal structure of the novel complex [Rh(Pz)(CO)P(OPh)3]2 has been determined by X-ray methods. The crystals are triclinic, space group P1, with Z = 2 in a unit cell of dimensions a 14.061(10), b 17.140(13), c 9.937(7) Å, α 102.19(7), β 10.9.55(8), γ 75.14(8)°. The structure has been solved by Patterson and Fourier methods and refined by full-matrix least-squares to R = 0.058 for 2514 independent observed reflections. The structure consists of discrete dimeric complexes in which each rhodium is in nearly square-planar arrangement, being bonded to a carbon atom of a carbonyl group, to a phosphorus of a triphenylphosphite ligand and to two nitrogen atoms of pyrazolate ligands bridging the metal atoms. The dihedral angle between the two square planes of 86.2° gives a bent configuration to the molecule in which the carbonyls and the phosphite ligands are in a trans arrangement.  相似文献   

7.
The transition state for the oxidative addition reaction [Rh(acac)(P(OPh)3)2] + CH3I, as well as two simplified models viz. [Rh(acac)(P(OCH3)3)2] and [Rh(acac)(P(OH)3)2], are calculated with the density functional theory (DFT) at the PW91/TZP level of theory. The full experimental model, as well as the simplified model systems, gives a good account of the experimental Rh-ligand bond lengths of both the rhodium(I) and rhodium(III) β-diketonatobis(triphenylphosphite) complexes. The relative stability of the four possible rhodium(III) reaction products is the same for all the models, with trans-[Rh(acac)(P(OPh)3)2(CH3)(I)] (in agreement with experimental data) as the most stable reaction product. The best agreement between the theoretical and experimental activation parameters was obtained for the full experimental system.  相似文献   

8.
Summary The reaction of previously reported RhI and IrI cationic complexes towards carbon monoxide and triphenylphosphine has been studied. Carbonyl rhodium(I) mixed complexes of the formulae [Rh(CO)L2(PPh3)]ClO4, (L=tetrahydrothiophene(tht), trimethylene sulfide(tms), SMe2, or SEt2), [(CO)(PPh3)Rh{-(L-L)}2Rh(PPh3)(CO)](ClO4)2 (L-L= 2,2,7,7-tetramethyl-3,6-dithiaoctane (tmdto), (MeS)2(CH2)3 (dth), or 1,4-dithiacyclohexane (dt), [Rh(CO)L(PPh3)2]ClO4 (L= tht, tms, SMe2, or SEt2), and carbonyl iridium(I) complexes of the formulae [Ir(CO)2(COD)(PPh3)]ClO4, [Ir(CO)(COD)(PPh3)2]ClO4, [(CO)(COD)(PPh3) Ir{-(L-L)} Ir(PPh3)(COD)(CO)](ClO4)2 (L-L = tmdto or dt), [(CO)2 (PPh3)Ir(-tmdto)Ir(PPh3)(CO)2](ClO4)2, [(CO)2(PPh3) Ir(-dt)2Ir(PPh3)(CO)2](ClO4)2, were prepared by different synthetic methods.  相似文献   

9.
The reaction of the [Ni6(CO)12]2− dianion with [Rh(COD)Cl]2 (COD = cyclooctadiene) in acetone affords a mixture of bimetallic Ni–Rh clusters, mainly consisting of the new [Ni7Rh3(CO)18]3− and [Ni8Rh(CO)18]3− trianions. A study of the reactivity of [Ni7Rh3(CO)18]3− led to isolation of the new [Ni3Rh3(CO)13]3− and [NiRh8(CO)19]2− anions. All these new bimetallic Ni–Rh carbonyl clusters have been isolated in the solid state as tetrasubstituted ammonium salts and have been characterised by elemental analysis, X-ray diffraction studies, ESI-MS and electrochemistry. The unit cell of the [NEt4]3[Ni7Rh3(CO)18] salt contains two orientationally-disordered ν2-tetrahedral [Ni7Rh3(CO)18]3− trianions with occupancy factors of 0.75 and 0.25. Besides, their inner Ni3Rh3 octahedral moieties show two cis sites purely occupied by Rh atoms, two trans sites purely occupied by Ni atoms and the remaining two cis sites are disordered Ni and Rh sites with respective occupancy fraction of 0.5. At difference from the parent [Ni7Rh3(CO)18]3−, the octahedral [Ni3Rh3(CO)13]3− displays an ordered distribution of Ni and Rh atoms in two staggered triangles. The [NiRh8(CO)19]2− dianion adopts an isomeric metal frame with respect to that of the [PtRh8(CO)19]2− congener. As a fallout of this work, new high-yield synthesis of the known [Ni6Rh3(CO)17]3− and [Ni6Rh5(CO)21]3−, as well as other currently-investigated bimetallic Ni–Rh clusters have been obtained.  相似文献   

10.
The Rh1(diolefin)complexes [Rh(nbd)( 2 )][PF6] [Rh(1,5-cod)( 2 )][PF6], and [Rh((Z)-α -acetamidocinnamic acid)( 2 )][PF6] ( 2 = the chiral P,N-ligand (S)-1-[bis(p-methylphenyl)phospino]-2-[p-methoxybenzyl)amino]-3-methylbutane have been prepared and characterized. These complexes exit as a mixture of isomers arising from different five-membered-ring conformations and diastereoisomers due to both the prochiral nitrogen and olefin ligands. The three-dimensional solutions structures of these complexes have been studied with the specific aim of understanding how the chiral pocket is built. Aspects of the exchange dynamics and their possible relevance to homogeneous hydrogenation are discussed The solid-state structure for the nbd complex, [Rh(nbd)( 2 )][PF6], as well as detailed one- and two-dimensional 31P-, 13C-, and 1H-NMR results are presented.  相似文献   

11.
Synthesis and Dynamic Behaviour of [Rh2(μ-H)3H2(PiPr3)4]+. Contributions to the Reactivity of the Tetrahydridodirhodium Complex [Rh2H4(PiPr3)4] An improved synthesis of [Rh2H4(PiPr3)4] ( 2 ) from [Rh(η3-C3H5)(PiPr3)2] ( 1 ) or [Rh(η3-CH2C6H5)(PiPr3)2] ( 3 ) and H2 is described. Compound 2 reacts with CO or CH3OH to give trans-[RhH(CO)(PiPr3)2] ( 4 ) and with ethene/acetone to yield a mixture of 4 and trans-[RhCH3(CO)(PiPr3)2] ( 5 ). The carbonyl(methyl) complex 5 has also been prepared from trans-[RhCl(CO)(PiPr3)2] ( 6 ) and CH3MgI. Whereas the reaction of 2 with two parts of CF3CO2H leads to [RhH22-O2CCF3) · (PiPr3)2] ( 8 ), treatment of 2 with one equivalent of CF3CO2H in presence of NH4PF6 gives the dinuclear compound [Rh2H5(PiPr3)4]PF6 ( 9a ). The reactions of 2 with HBF4 and [NO]BF4 afford the complexes [Rh2H5(PiPr3)4]BF4 ( 9b ) and trans-[RhF(NO)(PiPr3)2]BF4 ( 11 ), respectively. In solution, the cation [Rh2(μ-H)3H2(PiPr3)4]+ of the compounds 9a and 9b undergoes an intramolecular rearrangement in which the bridging hydrido and the phosphane ligands are involved.  相似文献   

12.
The complex Rh(acac)(CO)[P(tBu)(CH2CH=CH2)2] (1) proved to be an efficient precatalyst for the regioselective hydrogenation of quinoline (Q) to 1,2,3,4-tetrahydroquinoline (THQ) under mild reaction conditions (125 °C and 4 atm H2). A kinetic study of this reaction led to the rate law:
$$ r \, = \{ K_{1} k_{2} /(1 \, + \, K_{1} {\text{H}}_{ 2} )\} [{\text{Rh}}][{\text{H}}_{ 2} ]^{2} $$
which becomes
$$ r \, = \, K_{1} k_{2} [{\text{Rh}}][{\text{H}}_{ 2} ]^{2} $$
at hydrogen pressures below 4 atm. The active catalytic species is the cationic complex {Rh(Q)2(CO)[P(tBu)(CH2CH=CH2)2]}+ (2). The mechanism involves the partial hydrogenation of one coordinated Q of (2) to yield a complex containing a 1,2-dihydroquinoline (DHQ) ligand, {Rh(DHQ)(Q)(CO)[P(tBu)(CH2CH=CH2)2]}+ (3), followed by hydrogenation of the DHQ ligand to give THQ and a coordinatively unsaturated species {Rh(Q)(CO)[P(tBu)(CH2CH=CH2)2]}+ (4); this reaction is considered to be the rate-determining step. Coordination of a new Q molecule to (4) regenerates the active species (2) and restarts the catalytic cycle.
  相似文献   

13.
The 1,5-bis(3,5-dimethyl-1-pyrazolyl)-3-thiapentane ligand (bdtp) reacts with [Rh(COD)(THF)2][BF4] to give [Rh(COD)(bdtp)][BF4] ([1][BF4]), which is fluxional in solution on the NMR time scale. Its further treatment with carbon monoxide leads to a displacement of the 1,5-cyclooctadiene ligand, generating a mixture of two complexes, namely, [Rh(CO)2(bdtp)][BF4] ([2][BF4]) and [Rh(CO)(bdtp3N,N,S)][BF4] ([3][BF4]). In solution, [2][BF4] exists as a mixture of two isomers, [Rh(CO)2(bdtp2N,N)]+ ([2a]+) and [Rh(CO)2(bdtp3N,N,S)]+ ([2b]+; major isomer) rapidly interconverting on the NMR time scale. At room temperature, [2][BF4] easily loses one molecule of carbon monoxide to give [3][BF4]. The latter is prone to react with carbon monoxide to partially regenerate [2][BF4]. The ligands 1,2-bis[3-(3,5-dimethyl-1-pyrazolyl)-2-thiapropyl]benzene (bddf) and 1,8-bis(3,5-dimethyl-1-pyrazolyl)-3,6-dithiaoctane (bddo) are seen to react with two equivalents of [Rh(COD)(THF)2][BF4] to give the dinuclear complexes [Rh2(bddf)(COD)2][BF4]2 ([4][BF4]2) and [Rh2(bddo)(COD)2][BF4]2 ([5][BF4]2), respectively. In such complexes, the ligand acts as a double pincer holding two rhodium atoms through a chelation involving S and N donor atoms. Bubbling carbon monoxide into a solution of [4][BF4]2 results in loss of the COD ligand and carbonylation to give [Rh2(bddf)(CO)4][BF4]2 ([6][BF4]2). The single-crystal X-ray structures of [3][CF3SO3], [5][BF4]2 and [6][BF4]2 are reported.  相似文献   

14.
The redox condensation of [Ir(CO)4], [Ir(cod)(THF)2]+, and [Rh(cod)(THF)2]+ (cod = cycloocta-1,5-diene) followed by saturation with CO (1 atm) in THF afforded the first synthetic route to pure [Ir3Rh(CO)12] ( 1 ). Substitution of CO by monodentate ligands gave [Ir3Rh(CO)82-CO)3L] (L = Br, 2 ; I, 3 ; bicyclo[2.2.1]hept-2-ene, 4 ; PPh3, 5 ). Clusters 2 – 5 have Cs symmetry with the ligand L bound to the basal Rh-atom in axial position. They are fluxional in solution at the NMR time scale due to two CO scrambling processes: the merry-go-round of basal CO's and changes of basal face. An additional process takes place in 5 above room temperature: the intramolecular migration of PPh3 from the Rh- to a basal Ir-atom. Substitution of CO by polydentate ligands gave [Ir3Rh(CO)7–x2-CO)34-L)x] (L = bicyclo[2.2.1]hepta-2,5-diene (= norbornadiene; nbd), x = 1, 6 ; L = nbd, x = 2, 13 ; L = cod, x = 1, 7 ; L = cod x = 2, 15 ), [Ir3Rh(CO)72-CO)32-diars)] (diars = 1,2-phenylenebis-(dimethylarsine); 8 ), [Ir3Rh(CO)72-CO)34-L)] (L = methylenebis(diphenylphosphine), bonded to 2 basal Ir-atom ( 9a ) or one Ir- and one Rh-atom ( 9b )), [Ir3Rh(CO)62-CO)34-nbd)PPh3] ( 12 ), and [Ir3Rh(CO)62-CO)33-L)] (L = 1,3,5-trithiane, 10 ; L = CH(PPh2)3, 11 ). Complexes 6 – 8 , 9a , 10 , and 11 have Cs symmetry, the others C1 symmetry. They are fluxional in solution due to CO scrambling processes involving 1, 3, or 4 metal centres as deduced from 2D-EXSY spectra. Comparison of the activation energies of these processes with those of the isostructural Ir4 and Ir2Rh2 compounds showed that substitution of Ir by Rh in the basal face of an Ir4 compound slows the processes involving 3 or 4 metal centres (merry-go-round and change of basal face), but increases the rate of carbonyl rotation about an Ir-atom.  相似文献   

15.
Summary The substitution reactions of [Rh(acac)(CO)2] with triphenylphosphite (P) to produce [Rh(acac)(CO)P], [Rh(acac)P2] and [PhP3P], were studied in detail using spectroscopic (n.m.r., i.r. and u.v.-vis.) and kinetic techniques. The kinetic data demonstrate that the first substitution process is very fast and followed by the rate-determining second step. The subsequent loss of acac is relatively slow. The activation enthalpy for the formation of [Rh(acac)P2] is extremely low and possibly accounts for the catalytic nature of this system in hydrogenation and hydroformylation reactions.  相似文献   

16.
Vaska‐type complexes, i.e. trans‐[RhX(CO)(PPh3)2] (X is a halogen or pseudohalogen), undergo a range of reactions and exhibit considerable catalytic activity. The electron density on the RhI atom in these complexes plays an important role in their reactivity. Many cyanotrihydridoborate (BH3CN) complexes of Group 6–8 transition metals have been synthesized and structurally characterized, an exception being the rhodium(I) complex. Carbonyl(cyanotrihydridoborato‐κN)bis(triphenylphosphine‐κP)rhodium(I), [Rh(NCBH3)(CO)(C18H15P)2], was prepared by the metathesis reaction of sodium cyanotrihydridoborate with trans‐[RhCl(CO)(PPh3)2], and was characterized by single‐crystal X‐ray diffraction analysis and IR, 1H, 13C and 11B NMR spectroscopy. The X‐ray diffraction data indicate that the cyanotrihydridoborate ligand coordinates to the RhI atom through the N atom in a trans position with respect to the carbonyl ligand; this was also confirmed by the IR and NMR data. The carbonyl stretching frequency ν(CO) and the carbonyl carbon 1JC–Rh and 1JC–P coupling constants of the Cipso atoms of the triphenylphosphine groups reflect the diminished electron density on the central RhI atom compared to the parent trans‐[RhCl(CO)(PPh3)2] complex.  相似文献   

17.
Summary The use of [RhCl(CO)(PPh3)]2 as a precursor for the synthesis of complexes of the types [Rh(CO)L2(PPh3)]A (A = [ClO4] or [BPh4]; L = pyridine type ligand) and [Rh(CO)(L-L)(PPh3)]A (A = [ClO4] or [BPh4]; L-L = bidentate nitrogen donor) and the preparation of several complexes of the types [Rh(CO)L(PPh3){P(p-RC6H4)3}]BPh4 and [Rh(CO)(phen)(PPh3){P(p-RC6H4)3}]A (A = [ClO4] or [BPh4]; R = H or Me) is described.Author to whom all correspondence should be directed.  相似文献   

18.
Summary The preparations and characterisation of cationic complexes of the type [Rh(CO)(MeCN)(PR3)2]ClO4, [Rh(CO)L(PR3)2]ClO4 (L=py or 2-MeOpy), [Rh(CO)(L-L)(PR3)2]ClO4 (L-L = bipy or phen) and [Rh(CO)(PR3)3]ClO4 with PR3 = P(p-YC6H4)3 (Y=Cl, F, Me or MeO) are described.  相似文献   

19.
Summary Cationic rhodium(I) complexes of the type [Rh(diolefin)(L-L)]ClO4 and [Rh(diolefin)L2]ClO4, (diolefin = 1,5-cyclooctadiene, 2,5-norbornadiene and tetrafluorobenzobarrelene; L-L = 2,2-biimidazole, 2,2-bibenzimidazole; L = pyrazole or imidazoles) are described. [Rh(CO)2(L-L)]-C1O4 complexes, which can be obtained by reaction of cyclooctadiene derivatives with CO, react with P-donor ligands in equimolar ratios to yield [Rh(CO)(P-donor)(L-L)]ClO4 monocarbonyl derivatives. The catalytic activity of some of these complexes is considered.  相似文献   

20.
Summary Rhodium(I) carbonyl complexes, namely Rh(CO)X(R2SO)2 (R = Me, n-Pr or n-Bu) and Rh(CO)X(R2S)2 (R = Me, Et or i-Pr) and X = CI or Br, have been prepared and characterized. The compounds Rh(CO)X[P(OPh)3]2 X = Cl or Br, have also been isolated. In the R2SO and R2S complexes, the carbonyl stretching frequencies occur atca. 2020–2025 cm–1 andca. 1950–1980 cm–1 respectively. In the R2SO ligand containing complexes v(S-O) occurs atca. 1100–1125 cm–1 indicative of metal-sulphur coordination. In presence of HBF4, the addition of an excess of Me2SO to (OC)2Rh(-Cl)2Rh(CO)2 gives [Rh(Me2SO)6]3+ in which the central metal atom undergoes spontaneous oxidation from Rh1(d8) to RhIII(d6). The complexes have been characterized additionally by u.v.vis. spectra, conductivity measurements and by elemental analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号