首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The d electron orbital is a hidden but important degree of freedom controlling novel properties of transition-metal oxides. A one-dimensional orbital system is especially intriguing due to its enhanced quantum fluctuation. We present a combined experimental and theoretical study on the Raman scattering spectra in perovskite oxides NdVO(3) and LaVO(3) to prove that the quasi-one-dimensional orbital chain described by fermionic pseudospinons bears orbital excitations exchanging occupied orbital states on the neighboring sites, termed a two-orbiton in analogy with two-magnon.  相似文献   

2.
Minimizing total free energy by numerical calculations, we obtain the magnetic phase diagram of perovskite Mn oxides, such as with , Ca, Sr, etc. in the whole doping region from x =0 to x =1 at temperature T =0. It is discovered that a spiral state is stable in a low concentration of X ions while a canted state is stable in a high concentration of X ions, and a ferromagnetic phase can exist in the intermediate concentrations when the antiferromagnetic interaction is weak. The energy difference between spiral and canted states is found to be small when the Hund coupling is large. Magnetic field induced spiral/canted phase transition is considered as a possible mechanism of the colossal magnetoresistance (CMR) in the Mn oxides. Received: 11 July 1996 / Revised: 7 December 1996 / Accepted: 24 July 1997  相似文献   

3.
Applying a three-band model and the random phase approximation, we theoretically study the spin excitations in nickelate superconductors, which have been newly discovered. The spin excitations were found to be incommensurate in the low energy region.The spin resonance phenomenon emerged as the excitation energy increased. The intensity can be maximized at the incommensurate or commensurate momentum, depending on the out-of-plane momentum. The spin excitations reverted to incommensurate at higher energies. We also discuss the similarities and differences in the spin excitations of nickelate and cuprate superconductors.Our predicted results can be later validated in inelastic neutron scattering experiments.  相似文献   

4.
Hongbao Yao 《中国物理 B》2022,31(8):88106-088106
Photons with variable energy, high coherency, and switchable polarization provide an ideal tool-kits for exploring the cutting-edge scientific questions in the condensed matter physics and material sciences. Over decades, extensive researches in the sample fabrication and excitation have employed the photon as one of the important means to synthesize and explore the low-dimensional quantum materials. In this review, we firstly summarize the recent progresses of the state-of-the-art thin-film deposition methods using excimer pulsed laser, by which syntactic oxides with atomic-unit-cell-thick layers and extremely high crystalline quality can be programmatically fabricated. We demonstrate that the artificially engineered oxide quantum heterostructures exhibit the unexpected physical properties which are absent in their parent forms. Secondly, we highlight the recent work on probing the symmetry breaking at the surface/interface/interior and weak couplings among nanoscale ferroelectric domains using optical second harmonic generation. We clarify the current challenges in the in-situ characterizations under the external fields and large-scale imaging using optical second harmonic generation. The improvements in the sample quality and the non-contact detection technique further promote the understanding of the mechanism of the novel properties emerged at the interface and inspire the potential applications, such as the ferroelectric resistive memory and ultrahigh energy storage capacitors.  相似文献   

5.
The resistance switching behavior has recently attracted great attentions for its application as resistive random access memories (RRAMs) due to a variety of advantages such as simple structure, high-density, high-speed and low-power. As a leading storage media, the transition metal perovskite oxide owns the strong correlation of electrons and the stable crystal structure, which brings out multifunctionality such as ferroelectric, multiferroic, superconductor, and colossal magnetoresistance/electroresistance effect, etc. The existence of rich electronic phases, metal–insulator transition and the nonstoichiometric oxygen in perovskite oxide provides good platforms to insight into the resistive switching mechanisms.  相似文献   

6.
Conductivity and Hall effect measurements were made on KTa1?xNbxO3(x= 0.00,0.04,0.11 and 0.16) in the intermediate temperature range (77–300 K). It was found that the temperatures dependence of the Hall mobility obeyed a semiempirical relationship of Wemple et al. in this temperature range. The main scattering mechanism is proposed to be longitudinal optical phonons which are coupled to the “soft” transverse optical phonons associated with ferroelectricity.  相似文献   

7.
8.
The Izuyama, Kim and Kubo theory of spin waves in crystalline itinerant ferromagnets is extended to the amorphous itinerant ferromagnetic materials. The qualitative features of this theory are similar to that of the generalized Landau-Lifshitz theory discussed by Henderson and de Graaf.  相似文献   

9.
10.
Lattice parameters of the orthorhombic perovskites RMO3 (R=rare earth, M=Ti, V, ..., Ni, and Ga) have been simulated based on the ionic M-O bond length and rigid MO6/2 octahedra. Comparison with experimental data shows that the long-standing lattice-parameter anomaly generally found for the larger R3+ ions in these families is caused by a structural feature that is not revealed by the geometric tolerance factor widely used for the perovskites.  相似文献   

11.
12.
The correction to the string junction three-quark potential in a baryon due to the proper moment of inertia of the QCD string is calculated. The magnitudes of the string corrections in P wave heavy baryons are estimated.  相似文献   

13.
Spin excitations in granular structures with ferromagnetic nanoparticles   总被引:1,自引:0,他引:1  
Spin excitations and relaxation in a granular structure which contains metallic ferromagnetic nanoparticles in an insulating amorphous matrix are studied in the framework of the s-d exchange model. As the d system, we consider the granule spins, and the s system is represented by localized electrons in the amorphous matrix. In the one-loop approximation with respect to the s-d exchange interaction for a diagram expansion of the spin Green’s function, the spin excitation spectrum is found, which consists of spin-wave excitations in the granules and of polarized spin excitations. In polarized spin excitations, a change in the granule spin direction is accompanied by an electron transition with a spin flip between two sublevels of a split localized state in the matrix. We considered polarized spin relaxation (relaxation of the granule spins occurring by means of polarized spin excitations) determined by localized deep energy states in the matrix and the thermally activated electronic cloud of the granule. It is found that polarized spin relaxation is efficient over a wide frequency range. Estimates made for structures with cobalt granules showed that this relaxation could be observed in centimetric, millimetric, and submillimetric wavelength ranges.  相似文献   

14.
Electronic excitations in transition-metal oxides MnO, FeO, CoO and NiO are investigated by inelastic X-ray scattering and optical reflectivity measurements. The dielectric functions are derived from the experimental data as a function of the momentum transfer, q. Based on the derived q-dependent dielectric functions, two types of the charge transfer excitations, i.e., dipolar and non-dipolar charge transfer, are clearly identified. We show that the Mott gaps around 5 eV are defined by the former whereas the latter occurs at higher energies of 8–12 eV. Based on a molecular orbital analysis, we associate the dipolar and the non-dipolar excitations with non-local charge transfer and conventional charge transfer, respectively. These types of excitations are shown to be common for the 3d metal monoxides. On the other hand, the dd excitations observed in NiO and CoO at energy <4 eV do not appear in FeO and MnO. The reasons are addressed in this report.  相似文献   

15.
A neutron scattering study of the Mott-Hubbard insulator LaTiO3 ( T(N) = 132 K) reveals a spin wave spectrum that is well described by a nearest-neighbor superexchange constant J = 15.5 meV and a small Dzyaloshinskii-Moriya interaction ( D = 1.1 meV). The nearly isotropic spin wave spectrum is surprising in view of the absence of a static Jahn-Teller distortion that could quench the orbital angular momentum, and it may indicate strong orbital fluctuations. A resonant x-ray scattering study has uncovered no evidence of orbital order in LaTiO3.  相似文献   

16.
The luminescence excitation spectra and the electron excitation relaxation features of Al2O3, YAP, YAG, and YGG crystals are discussed from the viewpoint of the specificity caused by the complexity of the unit cell. The branching of relaxation is observed between the usual channel, characteristic of the simple wide-band insulators, and the one connected with the nonbonding states appearing in complex oxides. A model describing such branching is proposed. For comparison, the luminescent features of a CaWO4 crystal containing clearly separable oxyanion structures (in contrast to the crystals mentioned) are studied.  相似文献   

17.
18.
This article reviews the polarizability model and its applications to ferroelectric perovskite oxides. The motivation for the introduction of the model is discussed and nonlinear oxygen ion polarizability effects and their lattice dynamical implementation outlined. While a large part of this work is dedicated to results obtained within the self-consistent-phonon approximation, nonlinear solutions of the model are also handled, which are of interest to the physics of relaxor ferroelectrics, domain wall motions, and incommensurate phase transitions. The main emphasis is to compare the results of the model with experimental data and to predict novel phenomena.  相似文献   

19.
赵国栋  杨亚利  任伟 《物理学报》2018,67(15):157504-157504
钙钛矿型氧化物因具有丰富的磁性、铁电、力学和光学等诸多功能属性,在电子信息通信材料器件领域中有广阔的应用前景.在各种物理性质之中,铁电极化因其产生机制多样,并能与磁性和晶格应变相互耦合形成多铁性等特点,近十多年来一直被作为凝聚态物理研究的国际热点问题.与以自发极化作为初级序参量的常规铁电材料不同,非常规铁电材料中的铁电极化是被其他的序参量诱导而产生的.本综述围绕无机钙钛矿型氧化物非常规铁电体的研究进展进行了总结.回顾了该体系经典唯象理论和原子尺度的微观模型,有序排列的人工钙钛矿超晶格型结构,以及稀土正铁氧体单晶的反铁磁畴壁结构中非常规铁电的极化强度大小及其诱导机制,为系统理解非常规铁电提供了理论途径.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号