首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Platinum(II) and palladium(II) complexes containing chelating acyl ligands have been synthesized from salicylaldehyde, 2-hydroxynaphthaldehyde and 2-hydroxy-3-methoxybenzaldehyde. The platinum(II) complexes [Pt(acyl)L2], acyl  OC6H4CO, OC10H6CO, O(m-CH3OC6H3CO), L  tertiary phosphine, 1/2 diphenylphosphinoethane, can be isolated with both monodentate and chelating diphosphines, whereas for palladium only the compounds with chelating phosphines are readily obtainable. The reactions of [Pt(OC6H4CO)L2] with HCl afford trans-[PtCl(OHC6H4CO)L2], L  monodentate tertiary phosphine and cis-[PtCl(OHC6H4CO)L2], L2  1,2-bis-diphenylphosphinoethane, in which the metal—carbon bond remains intact. The structure of [Pt(OC6H4CO)-(P(p-CH3C6H4)3)2] has been determined by X-ray diffraction methods and found to have the expected square planar structure. Some relevant bond lengths and angles are: PtP; 2.271(4) and 2.348(5) Å; PtC; 1.96(2) Å and PtO; 2.07(1) Å; PPtP  101°, CPtO  82°.  相似文献   

2.
Tricyclopentadienyltetrahydrofuranuranium(III), (η5-C5H5)3U·OC4H8, crystallizes in the centrosymmetric monoclinic space group P21/n with a 8.248(3), b 24.322(17), c 8.357(4) Å, β 101.29(5)°, V 1644.0 Å3 and ρ(calc) 2.04 g cm?1 for Z = 4 and mol.wt. 595.0. Diffraction data (Mo-Kα, 2θ(max) 45°) were collected on an Enraf-Nonius CAD4 diffractometer and the structure was refined to Rw(F) 4.7% for those 1530 reflections having I > 2σ(I). The molecule consists of a distorted tetrahedral arrangement of THF and (η5-C5H5) ligands with CpUCp angles in the range 110.4–122.4° and CpUO angles between 90.2 and 106.0°. Individual uranium-carbon distances range from 2.76(2) to 2.82(2) Å and average 2.79[1] Å. The uranium-oxygen distance of 2.551(10) Å suggests a 10-coordinate U3+ radius of 1.20 Å in this class of compounds.  相似文献   

3.
The crystal and molecular structure of hexaphenylditin selenide (C6H5)3SnSeSn(G6H5)3 was determined by X-ray diffraction data and was refined to R  0.055. The compound is monoclinic, space group P21, with a  9.950(4), b  18.650(7), c  18.066(6) Å, β  106.81(4)°, Z  4. The two molecules in the asymmetric unit differ slightly in their conformations, both having approximate C2 symmetry. Bond lengths and angles are: SnSe 2.526 (2.521(3) ? 2.538(3)) Å; SnC 2.138 (2.107(16)?2.168(19)) Å; SnSeSn 103.4(1)°, 105.2(1)°. There are only slight angular distortions at the SnSeC3 tetrahedra (SeSnC angles: 104.3(5)?114.8(4)°). The bond data indicate essentially single bonds around the Sn atoms.  相似文献   

4.
Reactions of (RC5H4)2Cr2(SCMe3)2S(I, R = H; II, R = Me) with (PPh3)2PdCl2 in benzene at 20°C gives trinuclear complexes (RC5H4)2Cr2Cl23-S)(μ-SCMe3)2Pd(PPh3)(III, R = H; IV, R = Me). The structure of IV as a monobenzene solvate is established by an X-ray analysis (black-green triclinic crystals space group P1 with a = 11.403(4), b = 14.933(5), c = 14.131(5) Å, α = 99.13(3), β = 112.72(3), γ = 95.65(3)°, V = 2201.6 Å, Z = 2; IV·C6H6). The structure was solved by direct methods and refined in an anisotropic approximation to R = 0.046, Rw = 0.058 for 7643 reflections with I ? 2σ(I). In the molecule of IV metal atoms are separated by non-bonding distances (Cr … Cr 4.079(I), Cr … Pd 3.230(I) and 3.380(I) Å) but linked by the bridging tridentate sulphur atom (CrS 2.339(2) and 2.329(2), PdS 2.327(2) Å), and two SCMe3 groups between Pd and Cr (CrS 2.396(2) and 2.403(2), PdS 2.350(2) and 2.381(2) Å, Cr?Pd 85.14(6) and 89.92(6)°). The Cl atoms are transferred from Pd to Cr atoms (CrCl 2.308(2) Å) and being terminally coordinated are in trans-positions to each other (as well as η-CH3C5H4 rings) with respect to the Cr2Pd plane. Cr atoms in III and IV exhibit ferromagnetic exchange interactions over the Cr?Cr system (+2J = 28 and 11 cm?1, respectively).  相似文献   

5.
The title compound has been prepared by reaction of (C5H5)2Cr with oxindole (indole with CO in place of CH2 at the 2-position). Red single crystals belong to space group P21/c with a = 10.107(4) Å, b = 22.496(7) Å, c = 9.210(3) Å, β = 93.26(3)°, V = 2091(2), and Z = 2. The centrosymmetric molecule has a CrCr distance of 2.495(4) Å. The mean CrO and CrN distances for the bonds to bridging oxindolate anions are 2.024(7) and 2.065(8) Å, respectively. There is an oxindole molecule bound at each end with a CrO axial bond of length 2.341(8) Å and a hydrogen bond from the oxindole NH group to an equatorial oxygen atom of length 2.83(1) Å. The significance of this compound with respect to CrCr bonding is discussed.  相似文献   

6.
The structure of (η3-allyl)carbonylchlorobis(dimethylphenylphosphine)-iridium(III) hexafluorophosphate, [Ir(η3-C3H5)Cl(CO)(P(CH3)2(C6H5))2][PF6], has been determined from three-dimensional X-ray data to add support for a proposed mechanism of the oxidative addition of allyl halides to IrX(CO)(PR3)2 (X = halide). The compound crystallizes in space group C52h-P21/c with four formula units in a cell of dimensions a = 11.027(1), b = 12.230(2), c = 19.447(5) Å, and β = 103.16(2)0. Least-squares refinement of the structure has led to a value of the conventional R index (on F) of 0.066 for the 3018 independent reflections having F20>3—(F20). The crystal structure consists of discrete, monomericions. The hexafluorophosphate anion is disordered. The coordination geometry around the iridium atom may be described as octahedral, with the chloro ligand trans to the carbonyl group and each phosphorus atom trans to a terminal carbon of the allyl group. Structural parameters: Ir—P = 2.366(4), 2.347(3);Ir—Cl = 2.389(3); Ir—C(allyl) = 2.28(1), 2.24(1),2.25(1); Ir—C (carbonyl) = 1.85(1) Å; P—Ir—P = 105.7(1); C(terminal)—Ir—C(terminal) = 66.2(8); C—C—C = 125(2)o. The allyl group makes an angle of 126o with the P—Ir—P plane. Correlations between geometric structure and number of d electrons are noted among several M—C3H5-complexes, and are interpreted in the light of theoretical models of the M—C3H5- bond.  相似文献   

7.
Bis(cycloocta-1,5-diene)platinum reacts with 2,3,4,5-tetraphenylfulvene to afford the complex [Pt(η2-CH2C5Ph4)(cod)] (cod  C8H12) in which the metal atom is coordinated to the exo-cyclic double bond of the fulvene. Related compounds [Pt(η2-CH2C5Ph4L2] (L  PPh3, PMePh2, PMe2Ph, AsPh3 or CNBut have also been prepared and characterised. Reaction of the complexes [Pt(C2H4)2(L)] (L  P(cyclo-C6H11)3, PPh3 or AsPh3) with 2,3,4,5-tetraphenylfulvene yields the compounds [Pt(C2H4)(η2-CH2C5PH4)(L)]. NMR data for the new species are reported and discussed. 6,6-Diphenylfulvene reacts with [Pt(cod)2] and PPh3 (12 mol ratio) to give the complex [Pt(η2-C5H4CPh2)-(PPh3)2] in which the metal atom is bonded to carbon atoms C(2) and C(3) of the fulvene ring. This was established by an X-ray diffraction study. Crystals are monoclinic, space group P21/n, with Z  4 in a unit cell of dimensions a  13.761(4), b  21.653(13), c  17.395(6) Å, β,  104.46(2)°. The structure has been solved and refined to R  0.064 (R′  0.064) for 3139 independent diffracted intensifies measured at room temperature. The platinum atom is in a trigonal environment formed by the two ligated phosphorus atoms and the CC bond of the fulvene which is elongated to 1.52(3) Å. The c5 fulvene ring is planar, and makes an angle of 108° with the coordination plane around the platinum. In this plane the metal atom is slightly asymmetrically bonded with PtC 2.15(2) and 2.24(2) Å, and PtP 2.280(6) and 2.301(6) Å.  相似文献   

8.
The structure of Mn(NO)3PPh3 has been analyzed by single-crystal X-ray diffraction. It shows a tetrahedral geometry with essentially linear nitrosyl groups, and an eclipsed configuration around the MnP bond. Average distances and angles are: MnN 1.686(7) Å, MnP 2.315(2) Å, NO 1.165(10) Å, PC 1.815(4) Å, MnNO 177.2(7)°, PMnN 103.6(2)°, NMnN 114.7(4)°. Final R factor 7.3% for 2064 non-zero reflections. The structure of the five-coordinate nitrito complex Mn(NO)2(ONO)(PEt3)2 is also mentioned briefly.  相似文献   

9.
Two compounds of the formulae (dppeH2)3[MOCl6]2 ·12H2O I and (dppeH2)3[Mo2Cl9]2II are described. For compound I, which proved to be active in olefin epoxidation, the crystal structure was determined. The rose-pink crystals are triclinic, space group P1 with a = 13.715(9), b3 = 14.686(7), c = 12.512(7) Å, α = 109.56(4), β = 97,98(4) and γ = 91.27(5)°, V = 2345 Å, Dm = 1.42 and Dc = 1.44 gcm?3, Z = 1. Block-diagonal least squares refinement of the structure has led to a final value of the conventional R factor of 0.049 for the 3914 independent reflections with I > 3σ(I). Bond distances are in the range: MoCl 2.439(2)–2.469(2) Å, and PC 1.771(9)–1.806(8) Å.  相似文献   

10.
The complex dicarbonylbis(diphenylethylphosphine)platinum, Pt(CO)2[P(C6H5)2(C2H5)]2, crystallizes in either of the enantiomorphous space groups P3121 (No. 152) and P3221 (No. 154) with cell dimensions a = 10.64(1), c = 22.06(1) Å, U = 2163 Å3; pc = 1.564 g/cm3 for Z = 3, pm = 1.55(3) g/cm3. The intensities of 1177 independent reflections have been determined by counter methods with MoKα monochromatized radiation. The structure has been solved by the heavy atom method. The refinement, carried out by full-matrix least squares down to a final R factor of 0.042, has enabled the absolute configuration of the crystal sample (space group P3121) to be ascertained. The molecule is roughly tetrahedral, and has the metal atom lying on a two-fold axis of the cell. Bond parameters are: PtC = 1.92(2) Å, PtP = 2.360(4) Å, CPtC = 117(1)° and PPtP = 97.9(2)°. The PtC2 and PtP2 moieties make a dihedral angle of 86.0(3)°. The overall C2 symmetry of the molecule is probably only a statistically averaged situation, a disorder in the PtCO interactions being apparent from the orientations of the thermal ellipsoids of the C and O atoms.  相似文献   

11.
Crystal and molecular structures of the title compound have been determined from a three-dimentional X-ray analysis usinq diffractometer data. The crystals are triclinic, space group P1, with Z = 2 in a unit cell of dimensions a = 14.23(1), b = 17.30(1), c = 10.44(1) Å, α = 102.1(2), β = 102.7(2), γ = 105.5(2)°. Full matrix least squares refinement has given a final R-factor of 0.060 for 4628 reflections for which I > 3σ(I).The crystal structure consist of discrete cations and anions, together with benzene molecules of crystallisation which are situated about the crystallographic centres of symmetry and serve a purely space-filling role. In the cation coordination about the osmium atom is that of a distorted octahedron, comprising the two triphenylphosphine groups (mutually trans), the two carbonyl groups (mutually cis) and the dihapto S2Me group. The Os-P distances of 2.420 and 2.419(3) Å are normal. The S2Me group is nearly symmetrically coordinated with Os-S(l) 2.426(4)Å and Os-S(3) 2.442(4) Å. Other bonds and angles in this ligand are S(1)-S(2) 2.022(7) Å, S(1)-CH2 1.81(2) Å, and S(2)-S(1)-CH3 105.4(6)°. The observed geometry is similar to that in [Ir(S2) (Ph2PCH2CH2PPh2)2Cl.Ch3CN.  相似文献   

12.
The reaction of trans-MeOIr(CO)(PPh3)2 with TCNE (tetracyanoethylene) gives rise to the stable adduct MeOIr(CO)(PPh3)2(TCNE), the structure of which has been determined via a single-crystal X-ray diffraction study. This complex crystallizes in the centrosymmetric orthorhombic space group Pbca (D152h; No. 61) with a 17.806(4), b 20.769(4), c 20.589(6) Å, V 7614(3) Å3 and Z = 8. Diffraction data (Mo-Kα, 2θ = 5–45°) were collected on a Syntex P21 automated four-circle diffractometer and the structure was solved and refined to RF 6.2% for 3502 data with |F0| > 3σ(|F0|) (RF 4.3% for those 2775 data with |F0| > 6 σ(|F0|)). The central iridium atom has a distorted trigonal bipyramidal coordination geometry in which the methoxy group (Ir-OMe 2.057(8) Å) and carbonyl ligand (Ir-CO 1.897(14) Å) occupy axial sites with ∠MeOIrCO 174.7(4)°. The two triphenylphosphine ligands occupy equatorial sites (IrP(1) 2.399(3), IrP(2) 2.390(3) Å, ∠P(1)IrP(2) 110.32(11)° and the TCNE ligand is linked in an η2 “face-on” fashion with the olefinic bond parallel to the equatorial coordination plane (IrC(4) 2.176(10), IrC(7) 2.160(12) Å) and lengthened substantially from its value in the free olefin (C(4)C(7) 1.539(17) Å).  相似文献   

13.
The molecular structure of [(C6H5)3P]2Pd(C3H4) has been determined from three-dimensional X-ray diffraction data. The crystal belongs to the triclinic system, space group P1, with two formula units in a cell of dimensions: a = 19.475(2), b = 10.204(2), c = 18.341(2) Å, α = 108.46(2), β = 85.46(1), and γ = 118.80(1)°.One of the olefinic bonds of allene is coordinated to the palladium atom: PdC(1) = 2.118(9) and PdC(2) = 2.067(8) Å. The coordinated allene is no longer linear, the C(1)C(2)C(3) angle being 148.3(8)°. The C(1)C(2) distance is 1.401(11) Å, whereas the uncoordinated bond remains unchanged [C(2)C(3) = 1.304(12) Å]. The Pd, P(1), P(2), C(1) and C(2) atoms lie almost in the same plane.  相似文献   

14.
5-C5(CH3)5]Co(O2C6H4) crystallizes in the orthorhombic space group Pnma with a 12.942(4), b 12.902(4), c 8.543(3) Å, V 1426(1) Å3, and Z = 4. Least-squares refinement of 1688 independent observed reflections, F(obs) ? 2.5σ(Fobs), gives RF 3.79 and RwF 3.72%. The cyclopentadienyl ring contains two short (1.412(3) Å) and three longer (〈av〉 1.430(4) Å) CC bond lenghts, consistent with a slight preference for diolefin bonding. The O2C6H4 fragment is best described as a catecholate with a CO bond distance of 1.338(3), and a CoO distance of 1.837(2) Å.  相似文献   

15.
en Two differnt crystal modifications of hexaphenyldigermanium sulfide (C6H5GeSGe(C6H5)3 (I and II were obtained by crystallization from hot benzene/methanol or form ethanol at 20°C. Single crystal X-ray structural analyses for both I (low temperature data at ?130°C) and II (at 20°C) (I, R = 0.046; II, R = 0.048) were performed. I is monoclinic, P21/c, with a = 11.020(3), b = 15.473(3), c 18.606(3) »,π = 106.92(2)°, Z = 4; II is orthorhombic, P212121, with a = 2.617(2), b = 17.345(3), c = 18.408(3) », Z = 4.The molecules have different conformeric structures with respect to a rotation of the (C6H6)3Ge groups around the Ge bonds with very similar bond lenghts and angles. Bond data for I(II) are: GeS 2.212(1) and 2.261(1) » (2.227(2) and 2.240(2) »); GeC 1.933(4) ? 1.971(4), mean 1.945(5) » (1.931(7)?1.954(7), mean 1.943(4) »); GeSGe 111.2(1)° (110.7(1)°). The Ge bond lenghts are comparable to those in thiogermanates and do not indicate significant π-bond contributions.  相似文献   

16.
A new series of cationic areneiridium(I) complexes of formula [Ir(barrelene)(arene)]+ or [Ir(barrelene)(PhNRPh)]+ (R= Ph or H) have been synthesized from neutral iridium complexes of the type [IrY(barrelene)]x (barrelene = Me3TFB, Y = Cl or OMe (x = 2), Y = acac (x = 1); barrelene = TFB, Y = OMe (x = 2), Y = acac (x = 1)). The crystal structures of [Ir(Me3TFB)(1,4-C6H4Me2)]ClO4 and [Ir(TFB)(PhNPh2)]BF4·CH2Cl2 have been determined by X-ray diffraction. They crystallize in the space groups Pbca and Pna21 respectively with lattice constants of 17.6947(11), 15.8072(10), 16.0019(11) Å and 9.8059(2), 20.8097(9), 14.3367(4) Å. Final R factors were 0.063 and 0.042 for the observed data. Both complexes show a staggered arrangement between the arene and the TFB moieties and deviation from planarity of the coordinated arene ligands. In the second complex the IrC and NC distances, the CNC angle, the type of arene puckering, and the spectroscopic data indicate a distortion of the coordinated arene towards a η5-coordinated iminocyclohexadienyl form.  相似文献   

17.
The molecular and crystal structure of tris(bistrimethylsilylamin)thallium was determined by means of single-crystal X-ray spectroscopy: in the space group P31c with a = 16.447(7), c = 8.456(7) Å; and Dc = 1.149 g cm?3 two molecules are located in the unit cell. The compound is isomorphous to the analogues Fe[N(SiMe3)2]3 or Al[N(SiMe3)2]3, respectively, which show a propellar-twist of the Si2N-groups versus the plane of the metal atom and the three nitrogen-atoms: Tl(N)3/Si2N 49.1°; SiNSi 122.6°; NSiC 111.8°; CSiC 107.1°; TlN 2.089 Å;; SiN 1.738 Å;; SiC 1.889 Å;.  相似文献   

18.
Dimethylaluminium- and dimethylgallium-N,N′-dimethylacetamidine (I and II) are doubly associated forming a puckered eight-membered ring. They crystallize isostructurally in the monoclinic space group P21/c with two dimers per unit cell. The lattice constants of I are a 8.187, b 7.266, c 14.778 Å, β 103.58° and those of II a 8.163, b 7.277, c 14.835 Å, β 103.46°. The MN and the NC bond lengths within the rings are nearly equal, their mean values are for I: AlN 1.925 Å, CN 1.330 Å and for II: GaN 1.979 Å, CN 1.335 Å. This is also true for the exocyclic bond lengths with average values AlC 1.975 Å, NC 1.474 Å, CC 1.509 Å (for I) and GaC 1.998 Å, NC 1.484 Å and CC 1.507 Å (for II). The metal atoms are tetrahedrally coordinated, and the distortion is only slight. The final R-values are 0.034 and 0.056, respectively.  相似文献   

19.
NH3(MoO3)3 crystallizes with hexagonal symmetry, space group P63m, lattice constants a = 10.568 Å, c = 3.726 Å, and Z = 2. The crystal structure has been determined by Patterson synthesis and refined assuming isotropic temperature factors to a final conventional R value of 0.085. The structure shows a three-dimensional arrangement built up of double chains of distorted MoO6 octahedra, parallel to the [001] direction. The octahedral double chains are linked among each other through common oxygen atoms. In addition to the shared oxygen atoms, each molybdenum is coordinated to one terminal oxygen. MoO distances range from 1.645 to 2.378 Å and OMoO angles from 74.3 to 114.3°. These results are consistent with the fact that molybdenum in high-valence states shows octahedral coordination with terminal oxygens.  相似文献   

20.
The X-ray structure of H4Ru4(CO)9(PMe2Ph)[P(OC6H4Me-p)3][P(OCH2)3CEt], a chiral cluster complex, has been determined. The complex is triclinic, space group P1, a 19.812(7), b 14.299(4), c 10.323(4) Å, α 100.09(3), β 98.18(3), γ 102.23(3)°. The unit cell contains an enantiomeric pair of molecules. The Ru4 core contains two short (av. 2.785 Å) and four long (2.967 Å) RuRu separations with approximate D2d symmetry. RuP separations are 2.254(6) Å [to P(OCH2)3CEt], 2.270(6) Å [to P(OC6H4Me-p)3] and 2.326(7) Å [to PMe2Ph]; all P-donor ligands are trans to short RuRu vectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号