首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The linkage isomers CpM(CO)nSCN and CpM(CO)nNCS (Cp = η-C5H5; M = Fe, n = 2; M = Mo, n = 3) are interconverted by 366 nm irradiation in tetrahydrofuran solution at 30°C. Molybdenum and tungsten halide complexes CpM(CO)2-(PPh3)X undergo cistrans isomerization and disproportionation to CpM(CO)(PPh3)2X and CpM(CO)(PPh3)2X under similar conditions (benzene solution).  相似文献   

2.
Irradiation of bis(phosphine) tetracarbonyl complexes L2M(CO)4 (M = Cr, Mo, W) in the presence of donor ligands (amine, nitrile, halide ion) leads, via loss of one phosphine ligand, to neutral (LL′M(CO)4) or ionic ([LM(CO)4X]?) metal carbonyl compounds. The use of this reaction as the first step in a general synthesis of unsymmetrically disubstituted derivatives of Group VIA hexacarbonyls is discussed.  相似文献   

3.
The nitrosylcarbonylisonitrile complexes η5-C5H5M(NO)(CO)CNR (R = Me for Cr, Mo, W; R = Et, SiMe3, GeMe3, SnMe3 for Mo) are formed by treatment of the nitrosylcarbonylcyanometalates Na[η5-C5H5M(NO)(CO)CN] with [R3O]BF4 (R = Me, Et), Me3SiCl, Me3GeCl or Me3SnCl. The isoelectronic dicarbonylisonitrile compounds η5-C5H5Mn(CO)2CNR (R = SiMe3, GeMe3, SnMe3, PPh2, AsMe2) and η5-C5H5Re(CO)2CNAsMe2 are obtained by analogous reactions of Na[η5-C5H5M(CO)2CN] (M = Mn, Re) with Me3ECl (E = Si, Ge, Sn), Ph2PCl and Me2AsBr.With phosgene the anionic complexes Na[η5-C5H5M(CO)2CN] (M = Mn, Re) can be transformed into the new carbonyldiisocyanide-bridged dinuclear complexes η5-C5H5M(CO)2CN-C(O)-NC(OC)2M-η5-C5H5. Finally, the reactions of η5-C5H5M(NO)(CO)CNMe (M = Cr, Mo, W) with NOPF6, leading to the cationic dinitrosylisonitrile complexes [η5-C5H5M(NO)2CNMe]+, are described.  相似文献   

4.
The reaction between η5-C5H5M(CO)3I (M  Mo, W) and isonitriles, RNC, (RNC  PhCH2NC, t-BuNC and 2,6-dimethylphenylisocyanide (XyNC)) is catalysed by the dimer [η5-C5H5M(CO)3]2 (M = Mo, W) to yield η5-C5H5M(CO)3?n(RNC)nI (n = 1–3) and [η5-C5H5Mo(RNC)4]I. The complexes (η5-C5H5)2Mo2(CO)6?n(RNC)n (n = 1, RNC = MeNC, PhCH2NC, XyNC, t-BuNC; n = 2, RNC = t-BuNC) have been prepared in moderate yield from the direct reaction between [η5-C5H5Mo(CO)3]2 and RNC, and also catalyse the above reaction. A reaction pathway involving a fast non-chain radical mechanism and a slower chain radical mechanism is proposed to account for the catalysed reaction.  相似文献   

5.
The reaction of dicarbonyl- and carbonyl(trimethylphosphine)(cyclopentadienyl)-carbyne complexes of molybdenum and tungsten η5-C5H5(CO)2−n(PMe3)nMCR (n = 0, 1; M = Mo, W; R = CH3, C6H5, C6H4CH3, C3H5) with protic nucleophiles HX (X = Cl, CF3COO, CCl3COO) leads, through a combined protonation/carbon-carbon coupling reaction, to η2-acyl complexes η5-C5H5(CO)1−nX2(PMe3)n-M(η2-COCH2R). The reaction conditions, the results of the spectroscopic measurements and the X-ray structure of η5-C5H5(CO)(Cl2)W(η2-COCH2CH3) are reported.  相似文献   

6.
Mono-cyclopentadienyl complexes CpVX2(PR3)2 and Cp′VX2 (PR3)2 (Cp = η5- C5H5; Cp′ = η5-C5H4Me; R = Me, Et; X = Cl, Br) have been prepared by reaction of VX3(PR3)2 with CpM (M = Na, T1, SnBun3, 1/2 Mg) or Cp′Na. Attempts to prepare analogous complexes with other phosphine ligands, PPh3, PPh2 Me, PPhMe2, Pcy3, DMPE and DPPE failed. Reduction of CpVCl2(PEt3)2 with zinc or aluminium under CO (1 bar) offers a simple method for the preparation of CpV(CO)3(PEt3). The crystal structure of the trimethylphosphine complex CpVCl2(PMe3)2 is reported.  相似文献   

7.
The hydrides (η5-C5H5)(CO)3MH (M = Mo, W) react with ynamines R′CCNR2 under mild conditions to form 1 : 1 adducts. According to the 1H and 13C NMR spectra depending on the metal and the ynamine substituents carbene acyl chelate or complexes with η3-aminoacryloyl ligands are formed:
A Dicarbene chelate compound is obtained by alkylation of I, R = Et, R′ = Me. CC-η2 keteneimmonium complexes are formed in the reaction of the phosphite substituted hydrides (η5-C5H5)(CO)2P(OMe)3MH (M = Mo, W) with MeCCN Et; an intermediate 1-aminovinyl compound has been isolated.  相似文献   

8.
The aprotic acids HgCl2 and SnX4 (X  Cl, Br) react with the π-complexes C5H5M(CO)(NO)(L) (II, M  Mo W; L  PPh3) by attack at the metal center. With HgCl2 complexes II yield stable neutral 1:1 adducts CpM(CO)(NO)(L)HgCl2(III). In the case of SnCl4, complexes II initially produce the ionic 1:2 adducts [CpM(CO)(NO)(L)(SnCl3)]+SnCl5-(IV) which, as a result of oxidative elimination of CO, turn into the neutral complexes CpM(NO)(L)(SnCl3)(Cl)(V). In reactions of II with SnBr4 the corresponding CpM(NO)(L)(SnB3)(Br) complexes are formed directly. The formation of III–V is accompanied by a considerable increase of the frequencies ν(CO) and ν(NO). The structures of the complexes IV (M  Mo) and V (M  Mo) have been established by an X-ray structure analysis.  相似文献   

9.
Abstract

A new functionally substituted cyclopentadienyl salt p-MeO2CC6H4COC5H4Na (1) was prepared from cyclopentadienylsodium and dimethyl terephthalate in THF, and which might be utilized to synthesize a series of novel transition metal complexes containing difunctional group-substituted cyclopentadienyl ligands; 1 reacted with M(CO)6(M = Mo, W) followed by treatment with PBr3 or I2 to give mononuclear organomolybdenum (or tungsten) halides η5-p-MeO2CC6H4COC5H4M(CO)3X(2, M = Mo, X = Br; 3, M = W, X = Br; 4, M = Mo, X = I; 5, M = W, X = I), whereas reaction of 1 with W(CO)6 and successive treatment with selenium powder and MeI or PhCH2Cl afforded mononuclear organotungsten selenolate complexes η5-p-MeO2CC6H4COC5H4W (CO)3SeMe (6) and η5-p-MeO2CC6H4COC5H4W(CO)3SeCH2Ph (7). In addition, 1 reacted with M(CO)6(M = Mo, W) followed by treatment with FeCo2(CO)93-S) to produce the corresponding polynuclear complexes η5-p-MeO2CC6H4COC5H4MFeCo(CO)83?S) (8, M = Mo; 9, M = W), which could be converted with NaBH4 into hydroxyl derivatives η5-p-MeO2CC6H4CH(OH)C5H4MFeCo(CO)83?S) (10, M = Mo; 11, M = W). All the new transition metal complexes 2–11 have been fully characterized by elemental analysis, IR and 1H NMR spectroscopy, as well as for 4 by an X-ray diffraction analysis.  相似文献   

10.
η2 -Vinyl complexes [MCl{η2 -C(CF3)C(CF3)L} (CF3CCCF3)(η5 -C5H5)] (M = Mo, W: L = tertiary phosphine or phosphite or pyridine) have been shown by NMR and X-ray diffraction studies to exist in two distinct isomeric forms which exhibit (a) different orientations of the η2 -vinyl ligand (b) different configurations at the asymmetric carbon atom of the η2 -vinyl ligand: variable temperature NMR studies reveal fluxional behaviour thought to involve reversible inversion of configuration at this carbon atom.  相似文献   

11.
Reactions of the Cycloheptatrienyl Complexes [η7-C7H7W(CO)3]BF4 and η7-C7H7Mo(CO)2Br with Neutral Ligands and the Electrochemical Reduction of the Wolfram Complex Compounds of the type [η7-C7H7M(CO)2L][BF4] (L = P(C6H5)3, As(C6H5)3, Sb(C6H5)3 for M = W and L = N2H4 for M = Mo) were synthesized and characterisized. The iodide η7-C7H7W(CO)2I reacts with the diphosphine ((C6H5)2PCH2)2 to give the trihapto complex η3-C7H7 W(CO)2I((C6H5)2PCH2)2. In the case of η7-C7H7Mo(CO)2 Br reaction with hydrazine leads to the substitution product [η7-C7H7 Mo(CO)2N2H4], which can be stabilized by large anions. The binuclear complex [C7H7W(CO)3]2 has been synthesized electrochemically.  相似文献   

12.
1H‐1, 3‐Benzazaphospholes react with M(CO)5(THF) (M = Cr, Mo, W) to give thermally and relatively air stable η1‐(1H‐1, 3‐Benzazaphosphole‐P)M(CO)5 complexes. The 1H‐ and 13C‐NMR‐data are in accordance with the preservation of the phosphaaromatic π‐system of the ligand. The strong upfield 31P coordination shift, particularly of the Mo and W complexes, forms a contrast to the downfield‐shifts of phosphine‐M(CO)5 complexes and classifies benzazaphospholes as weak donor but efficient acceptor ligands. Nickelocene reacts as organometallic species with metalation of the NH‐function. The resulting ambident 1, 3‐benzazaphospholide anions prefer a μ2‐coordination of the η5‐CpNi‐fragment at phosphorus to coordination at nitrogen or a η3‐heteroallyl‐η5‐CpNi‐semisandwich structure. This is shown by characteristic NMR data and the crystal structure analysis of a η5‐CpNi‐benzazaphospholide. The latter is a P‐bridging dimer with a planar Ni2P2 ring and trans‐configuration of the two planar heterocyclic phosphido ligands arranged perpendicular to the four‐membered ring.  相似文献   

13.
Starting with the cyclopentadienyl(carbonyl)metal anions [π-C5H5(CO)3M]? (M = Cr, Mo, W) and (CH3)2SbBr, transition metal-substituted stibines of the form π-C5H5(CO)3MSb(CH3)2 are obtained. The nucleophilic character of the VB element primarily determines the reactivity of these species, and shows itself in alkyl halide quarternization (a) or ligand exchange on activated metal carbonyl complexes (b). (a) yields the trialkylstibine-substituted metal cations [π-C5H5-(CO)3MSb(CH3)2R]X (R = CH3, CH2CH=CH2, CH2C6H5; X = Br, J), (b) leads to the formation of the metal carbonyl derivatives LM(CO)5, L2M(CO)4 (M = Cr, Mo, W), LNi(CO)3 and LFe(CO)4 [L = (CH3)2SbM(CO)3-π-C5H5] which are the first (CH3)2Sb-bridged polynuclear complexes. Phosphorus ylides cause heterolytic cleavage of the antimonytransition metal bond. Transfer of the (CH3)2Sb-group to the ylidic carbanion occurs via substitution/transylidation. All new compounds have been fully characterized by means of 1H NMR, IR and mass spectroscopy  相似文献   

14.
Pronounced solvent dependence is observed in the infrared and electronic spectra of the new η-allyl complexes (η-R′ C3 H4)M(CO)2 L2X (M = Mo or W; R′ = H or Me; X = Ct, By, I or NCS; L2 = 1,2-ethanediylidenediimines or 2-pyridinaldimines).  相似文献   

15.
UV irradiation of η5-C5H5Nb(CO)4 in the presence of the phosphine ligands L (L = 2 PEt3, Ph2P(CH2)2PPh2 (p2(n), n = 1–5), cis-Ph2PCH=CHPPh2 (c-dpe)), and the mixed arsine-phosphine ligands Ph2AsCH2CH2PPh2 (arphos) and o-C6H4(AsPh2)(PPh2) (pab) yields the well defined complexes cis-[η5-C5H5Nb(CO)2L]. The monosubstituted species η5-C5H5Nb(CO)3L have been characterized spectroscopically. P2Ph4 forms mono- and dinuclear, mono- and biligate carbonylniobium complexes.Shielding of the 93Nb nucleus increases in the sequences (i) Ph2As- < Ph2P-, (ii) chelate 4-ring < chelate 5-ring and (iii) η5-C5H5Nb(CO)2L < η5-C5H5Nb(CO)3L < η5-C5H5Nb(CO)4, and 31P coordination shifts decrease in the order c-dpe > pab > arphos > p2(2) > p2(5) > p2(4) ~ PEt3 > p2(3) > p2(1). The trends generally parallel those for the corresponding NMR parameters of the vanadium complexes. Paramagnetic contributions to the overall shielding are smaller for the 93Nb than for the 51V nucleus, and this is explained in terms of increased covalency and decreased π-interaction in the niobium complexes.  相似文献   

16.
Reaction of optically active MePh(1-C10H7)GeLi with (η5-C5H5)M(CO)2NO (M = Mo, W) results in replacement of CO and formation of anionic species which can be alkylated with CH3I to afford mixtures of diastereoisomeric complexes, (η5-C5H5)M(CO)(NO)(GeR3)CH3 (R3 = MePh(1-C10H7); M = Mo, W). These complexes are the first in which a transition metal, surrounded by five different ligands shows optical activity. These compounds are not fluxional and show a high optical stability; under forcing conditions decomposition occurs before epimerisation.  相似文献   

17.
Tetraallylsilane was functionalised using (chloromethyl)dimethylsilane to give the first generation chloromethyl terminated dendrimer 1. The resulting dendrimer was successfully reacted with K[CpM(CO)2] (Cp=η5-C5H5; M=Fe, Ru) to give Si[(CH2)3SiMe2CH2MCp(CO)2]4 functionalised dendrimers in satisfactory yield. Reaction of dendrimer 1 with NaI in acetone gave the -SiMe2CH2I functionalised dendrimer, while reactions of 1 with K[CpM(CO)3] (M=Mo, W, Re), Li[C5Me4H], Na[C5Me4H], the cobaloxime nucleophile or tert-BuLi were not successful.  相似文献   

18.
The reaction of CpMo(CO)3X (X = Cl, I) with SbF5 in toluene leads to the cationic, halogen bridged compounds [{CpMo(CO)3}2X]SbF6 ( 1 , 2 ). CpW(CO)3Cl reacts with SbF5 to yield [{CpW(CO)3}2Cl]SbF6 ( 3 ), whereas with SbCl5, the oxidative substitution product [{CpW(CO)2Cl2}2Cl]SbCl6 ( 4 ) is formed, which decomposes in solution to yield the trichloride CpW(CO)2Cl3 ( 5 ). The strong Lewis acid SbF5 separates the halide from CpM(CO)3X (M = Mo, W), and the resulting cationic fragment “CpM(CO)3+” reacts with a further CpM(CO)3X forming a halonium bridge ( 1 – 3 ). The exclusive formation of SbF6 can be explained by the oxidizing power of SbF5. The IR, MS and NMR spectra of the compounds 1 – 5 as well as the X‐ray structure analysis of 5 are reported and discussed.  相似文献   

19.
In the compounds CpM(CO)3Et (M = Mo, W) the metal-ethyl σ-bond is photolabile. Upon irradiation of a solution of CpM(CO)3Et with UV light mainly [CpM(CO)3]2, CpM(CO)3H, ethane, and ethylene are produced. Formation of CpM(CO)3H is indicative of a β-elimination pathway for the photo-induced degradation. In the presence of trimethylphosphane (L) UV-irradiation of a solution of CpM(CO)3Et leads to the products Cp(CO)(L)2MM-(CO)3Cp, CpM(CO)2(L)Et and CpM(CO)2(L)H, while the thermal reaction produces the propionyl complexes CpM(CO)2(L)(COEt).  相似文献   

20.
Tungsten and molybdenum complexes [M(CO)2(dpphen)(dbf)2] (M = W 1 or Mo 2 ; dpphen = 4,7‐diphenyl‐1,10‐phenanthroline; dbf = dibutylfumarate) have been synthesized and structurally characterized by X‐ray diffraction analysis. In both complexes which have similar structure, the metal atom co‐ordination is distorted octahedral with dpphen and two CO groups in the equatorial plane and the metal atom binds in an η2‐fashion to the C–C bonds of two dbf ligands. The two C–C bonds are almost mutually orthogonal. The two complexes are different in conformation which result from face selection of the two dbf ligands for coordination to the metal atom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号