首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reactions of [MCl2(PP)] and [MCl2(PR3)2)] with 1-mercapto-2-phenyl-o-carborane/NaSeCboPh and 1,2-dimercapto-o-carborane yield mononuclear complexes of composition, [M(SCboPh)2(PP)], [M(SeCboPh)2(PP)] (M = Pd or Pt; PP = dppm (bis(diphenylphosphino)methane), dppe (1,2-bis(diphenylphosphino)ethane) or dppp (1,3-bis(diphenylphosphino)propane)) and [M(SCboS)(PR3)2] (2PR3 = dppm, dppe, 2PEt3, 2PMe2Ph, 2PMePh2 or 2PPh3). These complexes have been characterized by elemental analysis and NMR (1H, 31P, 77Se and 195Pt) spectroscopy. The 1J(Pt–P) values and 195Pt NMR chemical shifts are influenced by the nature of phosphine as well as thiolate ligand. Molecular structures of [Pt(SCboPh)2(dppm)], [Pt(SeCboPh)2(dppm)], [Pt(SCboS)(PMe2Ph)2] and [Pt(SCboS)(PMePh2)2] have been established by single crystal X-ray structural analyses. The platinum atom in all these complexes acquires a distorted square planar configuration defined by two cis-bound phosphine ligands and two chalcogenolate groups. The carborane rings are mutually anti in [Pt(SCboPh)2(dppm)] and [Pt(SeCboPh)2(dppm)].  相似文献   

2.
The reactions of [M2Cl2(μ-Cl)2(PMe2Ph)2] with mercapto-o-carboranes in the presence of pyridine afforded mono-nuclear complexes of composition, [MCl(SCb°R)(py)(PMe2Ph)] (M = Pd or Pt; Cb° = o-C2B10H10; R = H or Ph). The treatment of [PdCl2(PEt3)2] with PhCb°SH yielded trans-[Pd(SCb°Ph)2(PEt3)2] (4) which when left in solution in the presence of pyridine gave another substitution product, [Pd(SCb°Ph)2(py)(PEt3)] (5). The structures of [PdCl(SCb°Ph)(py)(PMe2Ph)] (1), [Pd(SCb°Ph)2(PEt3)2] (4) and [Pd(SCboPh)2(py)(PEt3)] (5) were established unambiguously by X-ray crystallography. The palladium atom in these complexes adopts a distorted square-planar configuration with neutral donor atoms occupying the trans positions. Thermolysis of [PdCl(SCb°)(py)(PMe2Ph)] (2) in TOPO (trioctylphosphine oxide) at 200 °C gave nanocrystals of TOPO capped Pd4S which were characterized by XRD pattern and SEM.  相似文献   

3.
The reactions of [MCl2(PP)] and [MCl2(PR3)2)] with 1-mercapto-2-phenyl-o-carborane/NaSeCboPh and 1,2-dimercapto-o-carborane yield mononuclear complexes of composition, [M(SCboPh)2(PP)], [M(SeCboPh)2(PP)] (M = Pd or Pt; PP = dppm (bis(diphenylphosphino)methane), dppe (1,2-bis(diphenylphosphino)ethane) or dppp (1,3-bis(diphenylphosphino)propane)) and [M(SCboS)(PR3)2] (2PR3 = dppm, dppe, 2PEt3, 2PMe2Ph, 2PMePh2 or 2PPh3). These complexes have been characterized by elemental analysis and NMR (1H, 31P, 77Se and 195Pt) spectroscopy. The 1J(Pt–P) values and 195Pt NMR chemical shifts are influenced by the nature of phosphine as well as thiolate ligand. Molecular structures of [Pt(SCboPh)2(dppm)], [Pt(SeCboPh)2(dppm)], [Pt(SCboS)(PMe2Ph)2] and [Pt(SCboS)(PMePh2)2] have been established by single crystal X-ray structural analyses. The platinum atom in all these complexes acquires a distorted square planar configuration defined by two cis-bound phosphine ligands and two chalcogenolate groups. The carborane rings are mutually anti in [Pt(SCboPh)2(dppm)] and [Pt(SeCboPh)2(dppm)].  相似文献   

4.
Methyl- or phenylN-carboxamido-complexes of platinum(II) Pt(NHCOR')RL2 (L = PEt3, R = Me, R′ = Me, CH = CH2; L = PEt3, R = Ph, R′ = Me; L = PMe2Ph, R = Ph, R′ = Me, Ph; L = PMePh2, R = Ph, R′ =3, R = Ph, R′ = Me) have been prepared by the reaction of KOH with cationic nitrile complexes [PtR(NCR′)L2]BF4. Thermally unstable hydrido-N-carboxamido-complexes could be detected spectroscopically. IR and NMR (1H, 31P) spectra of some of the complexes indicate the existence of a solvent- and temperature-dependent equilibrium between syn-and anti-isomers arising from restricted rotation about the NC bond of the carboxamido-group. The anti-isomer is favoured by nonpolar solvents and by increasing bulk of L. In the complex [PtH(NCCH CH2)(PEt3)2]BF4, IR and NMR spectra show acrlonitrile to be bound through nitrogen, not through the olefinic CC bond.  相似文献   

5.
[Ir(cod)Cl]2 (cod = 1,5-cyclooctadiene) reacts with PMe2Ph in CH3CN to give the red cation [Ir(PMe2Ph)4]+. This complex in CH3CN reacts with H2 to give cis-[IrH2(PMe2Ph)4]+, but on reflux for 6 h in the absence of H2, it gives the first example of a cyclometallated PMe2Ph complex fac-[IrH(PMe2C6H4)(PMe2Ph)3]+, as shown by PMR spectroscopy and preliminary X-ray crystallographic data.  相似文献   

6.
The mono-hydrido-bridged complexes (PEt3)2(Ar)Pt(μ2-H)Pt(Ar)(PEt3)2]-[BPh4] (Ar = Ph, 4-MeC6H4 and 2,4-Me2C6H3) have been obtained by treating trans-[Pt(Ar)(MeOH)(PEt3)2][BF4] with sodium formate and Na[BPH4]. The cations [PEt3)2(Ar)Pt(μ2-H)Pt(Arb')(PEt3)2]b+ (Ar = Ph and Arb' - 2,4-Me2C6H3 and 2,4,6-Me3C6H2 have bee identified in solution. Their b1H- and b31P-NMR data are reported. The X-ray crystal structure of [(PEt3)2(Ph)Pt(μ2-H)Pt(Ph)(PEt3)2][BPh4] is reported.  相似文献   

7.
A high-yield synthesis of [IrCl(cod)]2 (cod = 1,5-cyclooctadiene) is described. The 1H and 13C NMR spectra of a number of complexes [IrCl(cod)L] are interpreted in terms of a trans-effect series Cl? < sym-collidine < 2-picoline < PCy3 < P-i-Pr3 < Pet3 ~ AsPh3 < PMe2Ph < PMePh2 < PPh2 <P(MeO)Ph2 < PClPh2 < P(OPh)3 < PCl2Ph. Some ligand exchange reactions of [IrCl(cod)L] are discussed. A number of complexes of the type [Ir(cod)Ln]PF6 (L = a variety of amines (n = 2) and phosphines (n = 2 or 3)) are described. Exchange reactions of the sort: [Ir(cod)(PR3)2]PF6 + [Ir(cod)(py)2]PF6 ? [Ir(cod)(PR3)Py]PF6 are reported in which, surprisingly, the isolable mixed ligand complexes are the only detectable species at equilibrium (py = pyridine).  相似文献   

8.
The synthesis and the characterization of cobalt(I) complexes of the type [Co(diene)(phosphine)3]Y (diene = 1,3-butadiene and isoprene; phosphine = PMe3, PMe2Ph, and HPPh2; Y = ClO4, BF4, or BPh4) are reported. The fluxional nature of the five-coordinate cations [Co(diene)(phosphine)3]+ is shown by variable-temperature NMR spectroscopy (1H and 31P). Low-temperature spectra are consistent with a square-pyramidal structure in which the diene occupies two basal coordination sites.  相似文献   

9.
The complexes [Ir(cod)Ln]PF6(I, L = PPh3, PMePh2; n = 2. L = PMe2Ph; n = 3) react with HX to give [IrHX(cod)L2]PF6 (II, L = PMePh2 or PMe2Ph) or [IrHX2(cod)(PPh3)] (III). The intermediates [IrX(cod)L2] have, in two cases (L = PMePh2, X = I, Br), been directly isolated from the reaction mixtures at 0°C, and are also formed from I with KX (L = PPh3, X = Cl; L = PMePh2, X = Cl, Br, I); these intermediates protonate to give II (L = PMePh2), or an equimolar mixture of III and I (L = PPh3, X = Cl). Surprisingly, I2 reacts with I in MeOH to give III (L = PPh3). The stereochemistries of II and III were determined by < 1H NMR and especially by new methods using 13C NMR spectroscopy. The complexes I exhibit a Lewis acid reactivity pattern.  相似文献   

10.
Several new platinum(II) acetylide complexes, trans-{Pt[CCCR1R2(OR3)]2-L2} (R1, R2  H, Me, Et; CR1R2  cyclohexylidene; R3  H, Me or Ph), trans-[Pt(CCCH2CH2OH)2L2], trans-[Pt(p-tolylacetylide)2L2] and trans-[PtX(p-tolylacetylide)L2] (L  PMe2Ph or in one case, AsMe2Ph) have been prepared. Platinum(II) acetylide complexes with tertiary hydroxyl groups are easily dehydrated by acetic anhydride/pyridine to give platinum-enyne complexes. Analogous compounds with primary hydroxyl groups do not dehydrate but give acetates. 1H and 13C NMR data are given and the shift reagent Eu(fod)3 was used to analyse the 1H NMR spectrum of trans-[Pt(CCCH2CH2OH)2(PMe2Ph)2].  相似文献   

11.
Shinsaku Yamazaki 《Polyhedron》1985,4(11):1915-1923
A series of potentially five-coordinate Pd(II) complexes, [Pd(PMe2Ph)3(2,9-R2-phen)][BF4]2 (R = H or Me; phen = 1,10-phenanthroline  相似文献   

12.
Treatment of trans-[TcX4L2] (X Cl, Br and L PPH3, PMe2Ph) with carbon monoxide (1 atm) in boiling ethyleneglycol methyl ether, gives trans-[TcX-(CO)3L2]. Under these conditions the mer-[TcX3(PMe2Ph)3] (X Cl, Br) gives a mixture of the trans-[TcX(CO)3(PMe2Ph)2] and cis-[TcX(CO)2(PMe2Ph)3] complexes, but when added free dimethylphenylphosphine is present only the second product is obtained. Carbon monoxide reacts with mer-[TcCl3(PMe2Ph)3] in refluxing ethanol to give [TcCl3(CO)(PMe2Ph)3] a C3 v seven-coordinate technetium(III) complex.The stereochemistry of the complexes was determined from their IR and1H NMR spectra.  相似文献   

13.
Treatment of the bulky iminophosphine ligand [Ph2PCH2C(Ph)N(2,6-Me2C6H3)] (L) with [M(CH3CN)2(ligand)]+n, where for M = Pd(II): ligand = η3-allyl, n = 1, and for M = Rh(I), ligand: 2(C2H4), 2(CO) or cod, n = 0, yields the mono-cationic iminophosphine complexes [Pd(η3-C3H5)(L)][BF4] (1), [Rh(cod)(L)][BF4] (2), [Rh(CO)(CH3CN)(L)][BF4] (3), and cis-[Rh(L)2][BF4] (4). All the new complexes have been characterised by NMR spectroscopy and X-ray diffraction. Complex 1 shows moderate activity in the copolymerisation of CO and ethene but is inactive towards Heck coupling of 4-bromoacetophenone and n-butyl acrylate.  相似文献   

14.
Bis(cycloocta-1,5-diene)platinum reacts with 2,3,4,5-tetraphenylfulvene to afford the complex [Pt(η2-CH2C5Ph4)(cod)] (cod  C8H12) in which the metal atom is coordinated to the exo-cyclic double bond of the fulvene. Related compounds [Pt(η2-CH2C5Ph4L2] (L  PPh3, PMePh2, PMe2Ph, AsPh3 or CNBut have also been prepared and characterised. Reaction of the complexes [Pt(C2H4)2(L)] (L  P(cyclo-C6H11)3, PPh3 or AsPh3) with 2,3,4,5-tetraphenylfulvene yields the compounds [Pt(C2H4)(η2-CH2C5PH4)(L)]. NMR data for the new species are reported and discussed. 6,6-Diphenylfulvene reacts with [Pt(cod)2] and PPh3 (12 mol ratio) to give the complex [Pt(η2-C5H4CPh2)-(PPh3)2] in which the metal atom is bonded to carbon atoms C(2) and C(3) of the fulvene ring. This was established by an X-ray diffraction study. Crystals are monoclinic, space group P21/n, with Z  4 in a unit cell of dimensions a  13.761(4), b  21.653(13), c  17.395(6) Å, β,  104.46(2)°. The structure has been solved and refined to R  0.064 (R′  0.064) for 3139 independent diffracted intensifies measured at room temperature. The platinum atom is in a trigonal environment formed by the two ligated phosphorus atoms and the CC bond of the fulvene which is elongated to 1.52(3) Å. The c5 fulvene ring is planar, and makes an angle of 108° with the coordination plane around the platinum. In this plane the metal atom is slightly asymmetrically bonded with PtC 2.15(2) and 2.24(2) Å, and PtP 2.280(6) and 2.301(6) Å.  相似文献   

15.
The reaction of K2[PtCl4] with 2-(1-methylbenzyl)pyridine, HL, and 2-benzylpyridine, HL', affords the cyclometallated species [{Pt(L)Cl}2] (1) and [{Pt(L')Cl}2] (2), respectively. The chloride bridge in complex 1 can be split by neutral or anionic species to give the monomeric, [Pt(L)(Ph3P)Cl], as two isomers, trans-P-Pt-C (3) and trans-P-Pt-N, (4), [Pt(L)(py)Cl] (5), [Pt(L)(CO)Cl] (6), [Pt(L)(CNCH2SO2C6H4CH3-4)Cl] (7), [Pt(L)(acac)] (Hacac = 2,4-pentanedione) (8), [Pt(L)(dppm)][BF4] (dppm = bis(diphenyl-phosphino)methane) (9), [Pt(L)(dppe)][BF4] (dppe = bis(diphenylphosphino)ethane) (10) and [Pt(L)(dipy)][BF4](dipy = 2,2'-dipyridine) (11). Similarly, compound 2, by reaction with Ph3P, affords [Pt(L')(Ph3P)Cl], as two isomers, trans-P-Pt-C (12) and trans-P-Pt-N (13). Reaction of compounds 1 or 4 with AgBF4 in acetonitrile affords [Pt(L)(CH3CN)2IBF4] (14) or [Pt(L)(Ph3P)-(CH3CN)][BF4] (15). From these, [Pt(L)(Ph3P)2][BF4] (16), [Pt(L)(Ph3P)(CO)][BF4] (17) and [Pt(L)(Ph3P)(py)][BF4] (18), can be obtained by displacement of the coordinated acetonitrile. The new complexes were characterized by IR, 1H and 31P NMR and FAB-MS spectroscopic techniques. The NMR spectra at room temperature of most of the species derived from HL give evidence for the presence in solution of two diastereomers a and b. The structure of one diastereomer of complex 4 has been solved by single crystal X-ray diffraction, 4b. The platinum atom is in an almost square planar geometry with a P-Pt-N trans arrangement: Pt-N = 2.095(3), Pt-C = 1.998(4), Pt-P = 2.226(1) and Pt-Cl = 2.400(1) Å. The six-membered cyclometallated ring is in a boat conformation, with the CH3 group in an equatorial position, i.e pointing away from the metal. Attempts to obtain [{Pt(L″)Cl}2] (HL″ = 2-(dimethylbenzyl)pyridine), afforded an insoluble product heavily contaminated by platinum metal; treatment of this crude material with Ph3P gave [Pt(L″)(Ph3P)Cl] (19).  相似文献   

16.
Iridabicycles [Ir{κ3-N,C,O-(pyC(H)=C(C(O)Me)2}(Cl)(L−L)](L−L=cod (cod=1,5-cyclooctadiene), 1 a ; bipy (bipy=2,2’-bipyridine), 1 b ) have been obtained by oxidative coordination of 3-(pyridine-2-yl-methylene)pentane-2,4-dione L1 , to the complexes [{Ir(μ-Cl)(cod)}2] and [{Ir(μ-Cl)(coe)2}2] (coe=cis-cyclooctene), the latter in the presence of bipy. Remarkably, cleavage of the C3−C(O)Me bond of L1 has instead been achieved in the reaction with [Ir(Cl)(dmb)2] (dmb=2,3-dimethylbutadiene), yielding a compound formulated as [Ir{κ2-N,C-(pyC(H)C(C(O)Me))}(CO)(μ-Cl)(Me)]2, 2 . Treatment of dimer 2 with DMSO or PMe3 produced the complexes[Ir{κ2-N,C-(pyC(H)C(C(O)Me)}(CO)Cl(Me)L] (L=DMSO, 3 a ; PMe3, 3 b ). Plausible mechanisms for the reactions leading to complexes 1 and 2 are proposed by means of DFT calculations.  相似文献   

17.
The pseudo‐square‐planar complexes [Rh(cod)(Hbbtm)]BF4 ( 3 ), [Rh(bbte)(cod)]BF4 ( 4 ), [Rh(CO)2(Hbbtm)]BF4 ( 5 ), [Rh(bbte)(CO)2]BF4 ( 6 ), [Rh(bbtm)(cod)] ( 7 ) and [Rh(bbtm)(CO)2] ( 8 ) (Hbbtm=bis(benzothiazol‐2‐yl)methane=2,2′‐methylenebis[benzothiazole], bbte=bis(benzothiazol‐2‐yl)ethane=2,2′‐(ethane‐1,2‐diyl)bis[benzothiazole], and cod=cycloocta‐1,5‐diene) were synthesized and characterized. Diastereotopic protons were observed for the protons at the bridge in the 1H‐NMR of 3 and 5 . Twisting of the ethane‐1,2‐diyl bridge in 4 and 6 effects chemical equivalence of the CH2 groups in solution. Unusually large downfield shifts occur on coordination of the deprotonated ligand Hbbtm as the negative charge is delocalized in 7 and 8 . The NMR signals of the cod ligand in 4 could be differentiated. The X‐ray crystal structures of 3, 4 , and 6 are reported.  相似文献   

18.
19.
Direct reduction of WCl6 with PMe3 in toluene at 120°C in a sealed tube affords the complexes [WCl4(PMe3)x] (x = 2, 3). [WCl4(PMe3)3] abstracts oxygen from equimolar amounts of water in wet acetone or tetrahydrofuran to give [WOCl2(PMe3)3] in very high yields. This procedure has been successfully applied to the high yield synthesis of other known oxotungsten(IV) complexes, [WOCl2(PR3)3] (PR3 = PMe2Ph and PMePh2). Metathesis reactions of [WOCl2(PMe3)3] with NaX give [WOX2(PMe3)3] (X = NCO, NCS) and [WOX2(PMe3)] (X = Me2NCS2). The synthesis of the trimethylphosphite analogue, [WOCl2(P(OMe)3)3], is also described and the structures of the new complexes assigned on the basis of IR and 1H and 31P NMR spectroscopy.  相似文献   

20.
Rhodium complexes such as [RhCl(cod)]2, [Rh(cod)2]BF4, and [Rh(cod)(CH3CN)2]BF4 function as catalysts for carbonyl allylations by allylic alcohols with 1 equimolar amount of tin(II) chloride to each allylic alcohol and aldehyde in THF at 50 °C to produce the corresponding homoallylic alcohols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号